Properties

Label 2-19074-1.1-c1-0-25
Degree $2$
Conductor $19074$
Sign $-1$
Analytic cond. $152.306$
Root an. cond. $12.3412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s + 2·7-s + 8-s + 9-s − 2·10-s + 11-s − 12-s + 4·13-s + 2·14-s + 2·15-s + 16-s + 18-s + 2·19-s − 2·20-s − 2·21-s + 22-s − 2·23-s − 24-s − 25-s + 4·26-s − 27-s + 2·28-s − 2·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.301·11-s − 0.288·12-s + 1.10·13-s + 0.534·14-s + 0.516·15-s + 1/4·16-s + 0.235·18-s + 0.458·19-s − 0.447·20-s − 0.436·21-s + 0.213·22-s − 0.417·23-s − 0.204·24-s − 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.377·28-s − 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19074 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19074 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19074\)    =    \(2 \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(152.306\)
Root analytic conductor: \(12.3412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19074,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.86159791523714, −15.50305992065186, −15.03990298398650, −14.23188777649535, −13.87483198562833, −13.32382588827272, −12.55295562437688, −12.04478080242170, −11.68987157028148, −11.09389995215438, −10.82010740452089, −10.04442281646197, −9.260028655693960, −8.503739360084038, −7.890685005019509, −7.540785576904354, −6.626391647914420, −6.224244536630654, −5.479611760908804, −4.832026091366819, −4.297356253948725, −3.642322194401107, −3.090951910733605, −1.819179384530037, −1.258009721835221, 0, 1.258009721835221, 1.819179384530037, 3.090951910733605, 3.642322194401107, 4.297356253948725, 4.832026091366819, 5.479611760908804, 6.224244536630654, 6.626391647914420, 7.540785576904354, 7.890685005019509, 8.503739360084038, 9.260028655693960, 10.04442281646197, 10.82010740452089, 11.09389995215438, 11.68987157028148, 12.04478080242170, 12.55295562437688, 13.32382588827272, 13.87483198562833, 14.23188777649535, 15.03990298398650, 15.50305992065186, 15.86159791523714

Graph of the $Z$-function along the critical line