Properties

Label 2-18928-1.1-c1-0-17
Degree $2$
Conductor $18928$
Sign $-1$
Analytic cond. $151.140$
Root an. cond. $12.2939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 7-s − 2·9-s + 3·15-s + 6·17-s − 4·19-s − 21-s − 3·23-s + 4·25-s + 5·27-s + 6·29-s − 10·31-s − 3·35-s − 8·37-s − 8·43-s + 6·45-s + 6·47-s + 49-s − 6·51-s + 12·53-s + 4·57-s + 3·59-s + 11·61-s − 2·63-s + 2·67-s + 3·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.377·7-s − 2/3·9-s + 0.774·15-s + 1.45·17-s − 0.917·19-s − 0.218·21-s − 0.625·23-s + 4/5·25-s + 0.962·27-s + 1.11·29-s − 1.79·31-s − 0.507·35-s − 1.31·37-s − 1.21·43-s + 0.894·45-s + 0.875·47-s + 1/7·49-s − 0.840·51-s + 1.64·53-s + 0.529·57-s + 0.390·59-s + 1.40·61-s − 0.251·63-s + 0.244·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18928\)    =    \(2^{4} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(151.140\)
Root analytic conductor: \(12.2939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11765849027433, −15.47666420165113, −14.91801768974690, −14.43892784571984, −14.03351017205359, −13.14642780305461, −12.46613271278135, −11.90711161404209, −11.83225060992882, −11.11093240479602, −10.49727565113466, −10.17066491773366, −9.124804384317065, −8.419617504100868, −8.238838076205987, −7.444550179410317, −6.956318257072452, −6.186312940315737, −5.382897569099135, −5.115582738087140, −4.062176311767291, −3.720529833746135, −2.916822744878718, −1.931382304106642, −0.8221959911900580, 0, 0.8221959911900580, 1.931382304106642, 2.916822744878718, 3.720529833746135, 4.062176311767291, 5.115582738087140, 5.382897569099135, 6.186312940315737, 6.956318257072452, 7.444550179410317, 8.238838076205987, 8.419617504100868, 9.124804384317065, 10.17066491773366, 10.49727565113466, 11.11093240479602, 11.83225060992882, 11.90711161404209, 12.46613271278135, 13.14642780305461, 14.03351017205359, 14.43892784571984, 14.91801768974690, 15.47666420165113, 16.11765849027433

Graph of the $Z$-function along the critical line