Properties

Label 2-18928-1.1-c1-0-30
Degree $2$
Conductor $18928$
Sign $-1$
Analytic cond. $151.140$
Root an. cond. $12.2939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·5-s + 7-s + 9-s + 6·15-s − 6·17-s − 7·19-s + 2·21-s − 3·23-s + 4·25-s − 4·27-s − 9·29-s + 5·31-s + 3·35-s − 2·37-s + 6·41-s + 43-s + 3·45-s + 3·47-s + 49-s − 12·51-s − 9·53-s − 14·57-s − 10·61-s + 63-s + 14·67-s − 6·69-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.34·5-s + 0.377·7-s + 1/3·9-s + 1.54·15-s − 1.45·17-s − 1.60·19-s + 0.436·21-s − 0.625·23-s + 4/5·25-s − 0.769·27-s − 1.67·29-s + 0.898·31-s + 0.507·35-s − 0.328·37-s + 0.937·41-s + 0.152·43-s + 0.447·45-s + 0.437·47-s + 1/7·49-s − 1.68·51-s − 1.23·53-s − 1.85·57-s − 1.28·61-s + 0.125·63-s + 1.71·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18928\)    =    \(2^{4} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(151.140\)
Root analytic conductor: \(12.2939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71163108622258, −15.42155316186646, −14.69663262643249, −14.41165625275906, −13.75712996210193, −13.48041833219154, −12.89119989933543, −12.46370022532874, −11.35463119866741, −11.03214488768436, −10.32294309257686, −9.723157226676027, −9.185081086236078, −8.758617607888968, −8.279569651913566, −7.568220735166279, −6.864923528347498, −6.026108670982932, −5.869798823807070, −4.732383264656515, −4.257521965264760, −3.430710537522067, −2.421197616216489, −2.194109652381734, −1.569670561912751, 0, 1.569670561912751, 2.194109652381734, 2.421197616216489, 3.430710537522067, 4.257521965264760, 4.732383264656515, 5.869798823807070, 6.026108670982932, 6.864923528347498, 7.568220735166279, 8.279569651913566, 8.758617607888968, 9.185081086236078, 9.723157226676027, 10.32294309257686, 11.03214488768436, 11.35463119866741, 12.46370022532874, 12.89119989933543, 13.48041833219154, 13.75712996210193, 14.41165625275906, 14.69663262643249, 15.42155316186646, 15.71163108622258

Graph of the $Z$-function along the critical line