Properties

Label 2-187200-1.1-c1-0-188
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 13-s + 6·17-s + 4·19-s − 6·23-s + 6·29-s − 10·31-s − 10·37-s − 6·41-s − 4·43-s − 12·47-s + 9·49-s + 12·53-s + 12·59-s + 10·61-s + 14·67-s + 16·73-s + 8·79-s + 12·83-s + 6·89-s + 4·91-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.277·13-s + 1.45·17-s + 0.917·19-s − 1.25·23-s + 1.11·29-s − 1.79·31-s − 1.64·37-s − 0.937·41-s − 0.609·43-s − 1.75·47-s + 9/7·49-s + 1.64·53-s + 1.56·59-s + 1.28·61-s + 1.71·67-s + 1.87·73-s + 0.900·79-s + 1.31·83-s + 0.635·89-s + 0.419·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.945921950\)
\(L(\frac12)\) \(\approx\) \(3.945921950\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16772311742607, −12.51872909218974, −12.07366026308231, −11.72248593444492, −11.37617434039626, −10.78693967965582, −10.24941488913105, −9.930967344682637, −9.404735342046266, −8.635557998287078, −8.223430714464486, −8.061327315976999, −7.413933201028215, −6.900588051880571, −6.421164525201329, −5.449404027271624, −5.286276593008153, −5.069680816002037, −4.109239418147030, −3.588772731863164, −3.311528119801491, −2.166201791400224, −1.920119506457424, −1.206840698578163, −0.6041191570013176, 0.6041191570013176, 1.206840698578163, 1.920119506457424, 2.166201791400224, 3.311528119801491, 3.588772731863164, 4.109239418147030, 5.069680816002037, 5.286276593008153, 5.449404027271624, 6.421164525201329, 6.900588051880571, 7.413933201028215, 8.061327315976999, 8.223430714464486, 8.635557998287078, 9.404735342046266, 9.930967344682637, 10.24941488913105, 10.78693967965582, 11.37617434039626, 11.72248593444492, 12.07366026308231, 12.51872909218974, 13.16772311742607

Graph of the $Z$-function along the critical line