Properties

Label 2-187200-1.1-c1-0-408
Degree $2$
Conductor $187200$
Sign $-1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s + 13-s − 6·17-s + 8·19-s + 8·23-s + 2·29-s + 8·31-s − 10·37-s − 6·41-s − 4·43-s − 7·49-s + 14·53-s − 12·59-s + 10·61-s − 8·67-s + 14·73-s − 4·79-s − 4·83-s + 10·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.20·11-s + 0.277·13-s − 1.45·17-s + 1.83·19-s + 1.66·23-s + 0.371·29-s + 1.43·31-s − 1.64·37-s − 0.937·41-s − 0.609·43-s − 49-s + 1.92·53-s − 1.56·59-s + 1.28·61-s − 0.977·67-s + 1.63·73-s − 0.450·79-s − 0.439·83-s + 1.05·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50896907168993, −13.03642958696245, −12.17579587338324, −11.99835599570777, −11.49295317508203, −11.14990735926587, −10.50793961640934, −10.09426237993159, −9.416081559547135, −9.151849458143568, −8.620782712959287, −8.283881955170742, −7.504853046304993, −6.852982829180321, −6.786143764988213, −6.244025297335607, −5.416482709193815, −5.012994203118976, −4.573503252804360, −3.845134564635994, −3.368420192228452, −2.871999219804087, −2.150108401295796, −1.287310615407548, −1.058193817842103, 0, 1.058193817842103, 1.287310615407548, 2.150108401295796, 2.871999219804087, 3.368420192228452, 3.845134564635994, 4.573503252804360, 5.012994203118976, 5.416482709193815, 6.244025297335607, 6.786143764988213, 6.852982829180321, 7.504853046304993, 8.283881955170742, 8.620782712959287, 9.151849458143568, 9.416081559547135, 10.09426237993159, 10.50793961640934, 11.14990735926587, 11.49295317508203, 11.99835599570777, 12.17579587338324, 13.03642958696245, 13.50896907168993

Graph of the $Z$-function along the critical line