Properties

Label 2-186576-1.1-c1-0-52
Degree $2$
Conductor $186576$
Sign $1$
Analytic cond. $1489.81$
Root an. cond. $38.5981$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 2·7-s + 9-s − 2·11-s + 4·15-s + 2·17-s + 6·19-s + 2·21-s + 23-s + 11·25-s + 27-s + 2·29-s + 4·31-s − 2·33-s + 8·35-s − 4·37-s + 6·41-s + 4·45-s − 3·49-s + 2·51-s + 6·53-s − 8·55-s + 6·57-s − 2·61-s + 2·63-s − 14·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 1.03·15-s + 0.485·17-s + 1.37·19-s + 0.436·21-s + 0.208·23-s + 11/5·25-s + 0.192·27-s + 0.371·29-s + 0.718·31-s − 0.348·33-s + 1.35·35-s − 0.657·37-s + 0.937·41-s + 0.596·45-s − 3/7·49-s + 0.280·51-s + 0.824·53-s − 1.07·55-s + 0.794·57-s − 0.256·61-s + 0.251·63-s − 1.71·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186576\)    =    \(2^{4} \cdot 3 \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1489.81\)
Root analytic conductor: \(38.5981\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.431328082\)
\(L(\frac12)\) \(\approx\) \(7.431328082\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27118282819050, −12.80147946683532, −12.28657679349850, −11.74291981009927, −11.18713273344727, −10.57889622909678, −10.20636975809787, −9.843383714583386, −9.367513748840982, −8.927442001815857, −8.406789658463623, −7.916712886092257, −7.335679695451942, −6.956167956014768, −6.220401501978404, −5.700300656440077, −5.400508550806788, −4.806357175488207, −4.402057524175011, −3.412613590329375, −2.898946453468849, −2.515971606444840, −1.792143818608873, −1.384028350308261, −0.7592802704598119, 0.7592802704598119, 1.384028350308261, 1.792143818608873, 2.515971606444840, 2.898946453468849, 3.412613590329375, 4.402057524175011, 4.806357175488207, 5.400508550806788, 5.700300656440077, 6.220401501978404, 6.956167956014768, 7.335679695451942, 7.916712886092257, 8.406789658463623, 8.927442001815857, 9.367513748840982, 9.843383714583386, 10.20636975809787, 10.57889622909678, 11.18713273344727, 11.74291981009927, 12.28657679349850, 12.80147946683532, 13.27118282819050

Graph of the $Z$-function along the critical line