Properties

Label 2-186576-1.1-c1-0-21
Degree $2$
Conductor $186576$
Sign $1$
Analytic cond. $1489.81$
Root an. cond. $38.5981$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s + 4·11-s − 15-s + 2·17-s + 5·19-s − 4·21-s + 23-s − 4·25-s + 27-s − 2·31-s + 4·33-s + 4·35-s + 4·37-s + 2·41-s − 43-s − 45-s + 7·47-s + 9·49-s + 2·51-s + 5·53-s − 4·55-s + 5·57-s − 59-s + 4·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.258·15-s + 0.485·17-s + 1.14·19-s − 0.872·21-s + 0.208·23-s − 4/5·25-s + 0.192·27-s − 0.359·31-s + 0.696·33-s + 0.676·35-s + 0.657·37-s + 0.312·41-s − 0.152·43-s − 0.149·45-s + 1.02·47-s + 9/7·49-s + 0.280·51-s + 0.686·53-s − 0.539·55-s + 0.662·57-s − 0.130·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186576\)    =    \(2^{4} \cdot 3 \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1489.81\)
Root analytic conductor: \(38.5981\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.827807449\)
\(L(\frac12)\) \(\approx\) \(2.827807449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 5 T + p T^{2} \) 1.19.af
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03127389582353, −12.77564223599129, −12.15514014803014, −11.76607508049362, −11.47029259513015, −10.65437293309315, −10.16526362803204, −9.705689348296093, −9.284860529184674, −9.065393092589477, −8.410256768262764, −7.743542560907326, −7.389323947956379, −6.889627057401240, −6.441948766562422, −5.813756057437710, −5.483738821513125, −4.505672438684136, −4.068655855816221, −3.514601664462183, −3.246845033796995, −2.629288602905128, −1.882371870013625, −1.070213981340595, −0.5252103383863097, 0.5252103383863097, 1.070213981340595, 1.882371870013625, 2.629288602905128, 3.246845033796995, 3.514601664462183, 4.068655855816221, 4.505672438684136, 5.483738821513125, 5.813756057437710, 6.441948766562422, 6.889627057401240, 7.389323947956379, 7.743542560907326, 8.410256768262764, 9.065393092589477, 9.284860529184674, 9.705689348296093, 10.16526362803204, 10.65437293309315, 11.47029259513015, 11.76607508049362, 12.15514014803014, 12.77564223599129, 13.03127389582353

Graph of the $Z$-function along the critical line