Properties

Label 2-184910-1.1-c1-0-7
Degree $2$
Conductor $184910$
Sign $1$
Analytic cond. $1476.51$
Root an. cond. $38.4254$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 3·9-s − 10-s − 11-s + 5·13-s − 14-s + 16-s + 6·17-s + 3·18-s + 20-s + 22-s − 4·23-s + 25-s − 5·26-s + 28-s + 4·29-s + 5·31-s − 32-s − 6·34-s + 35-s − 3·36-s + 4·37-s − 40-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 9-s − 0.316·10-s − 0.301·11-s + 1.38·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.707·18-s + 0.223·20-s + 0.213·22-s − 0.834·23-s + 1/5·25-s − 0.980·26-s + 0.188·28-s + 0.742·29-s + 0.898·31-s − 0.176·32-s − 1.02·34-s + 0.169·35-s − 1/2·36-s + 0.657·37-s − 0.158·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184910\)    =    \(2 \cdot 5 \cdot 11 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(1476.51\)
Root analytic conductor: \(38.4254\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 184910,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.677441745\)
\(L(\frac12)\) \(\approx\) \(2.677441745\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 + T \)
41 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21739560375231, −12.56049825318605, −12.05364681213320, −11.63493393373260, −11.22575499234613, −10.77499592325172, −10.14709561770212, −9.954198245556523, −9.369870083829164, −8.660697843856550, −8.401851040798892, −8.048835306090936, −7.580844702926669, −6.808821657882470, −6.216364269783600, −6.021780810978718, −5.330942971952645, −5.035873586658402, −4.031267705190453, −3.581613221132330, −2.924746784431563, −2.439832533586472, −1.757304482815125, −1.033406388964773, −0.6167540013073078, 0.6167540013073078, 1.033406388964773, 1.757304482815125, 2.439832533586472, 2.924746784431563, 3.581613221132330, 4.031267705190453, 5.035873586658402, 5.330942971952645, 6.021780810978718, 6.216364269783600, 6.808821657882470, 7.580844702926669, 8.048835306090936, 8.401851040798892, 8.660697843856550, 9.369870083829164, 9.954198245556523, 10.14709561770212, 10.77499592325172, 11.22575499234613, 11.63493393373260, 12.05364681213320, 12.56049825318605, 13.21739560375231

Graph of the $Z$-function along the critical line