Properties

Label 2-18150-1.1-c1-0-25
Degree $2$
Conductor $18150$
Sign $1$
Analytic cond. $144.928$
Root an. cond. $12.0386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 2·7-s + 8-s + 9-s − 12-s + 2·14-s + 16-s + 2·17-s + 18-s − 2·19-s − 2·21-s − 24-s − 27-s + 2·28-s − 6·29-s + 32-s + 2·34-s + 36-s + 6·37-s − 2·38-s + 6·41-s − 2·42-s + 2·43-s + 4·47-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.534·14-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.458·19-s − 0.436·21-s − 0.204·24-s − 0.192·27-s + 0.377·28-s − 1.11·29-s + 0.176·32-s + 0.342·34-s + 1/6·36-s + 0.986·37-s − 0.324·38-s + 0.937·41-s − 0.308·42-s + 0.304·43-s + 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18150\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(144.928\)
Root analytic conductor: \(12.0386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.261781120\)
\(L(\frac12)\) \(\approx\) \(3.261781120\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71257071743029, −15.11587361363290, −14.77054462237178, −14.09759530455769, −13.69616386524875, −12.86087139913826, −12.57006464745956, −11.97345248358275, −11.27073891628065, −11.01549370540200, −10.47084951117836, −9.605608313703346, −9.179681903503014, −8.092945545759616, −7.835025233580815, −7.086500839646782, −6.412193586829063, −5.789863771845004, −5.301220350233838, −4.596224832082964, −4.092448527108023, −3.312916824380598, −2.368748504665450, −1.665841687231654, −0.7141236717834001, 0.7141236717834001, 1.665841687231654, 2.368748504665450, 3.312916824380598, 4.092448527108023, 4.596224832082964, 5.301220350233838, 5.789863771845004, 6.412193586829063, 7.086500839646782, 7.835025233580815, 8.092945545759616, 9.179681903503014, 9.605608313703346, 10.47084951117836, 11.01549370540200, 11.27073891628065, 11.97345248358275, 12.57006464745956, 12.86087139913826, 13.69616386524875, 14.09759530455769, 14.77054462237178, 15.11587361363290, 15.71257071743029

Graph of the $Z$-function along the critical line