Properties

Label 2-179536-1.1-c1-0-25
Degree $2$
Conductor $179536$
Sign $1$
Analytic cond. $1433.60$
Root an. cond. $37.8629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 2·9-s + 3·11-s + 6·13-s + 3·15-s + 7·17-s + 3·19-s − 4·23-s + 4·25-s − 5·27-s − 6·29-s + 4·31-s + 3·33-s + 2·37-s + 6·39-s − 6·41-s − 7·43-s − 6·45-s + 6·47-s + 7·51-s − 10·53-s + 9·55-s + 3·57-s + 4·59-s − 5·61-s + 18·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 2/3·9-s + 0.904·11-s + 1.66·13-s + 0.774·15-s + 1.69·17-s + 0.688·19-s − 0.834·23-s + 4/5·25-s − 0.962·27-s − 1.11·29-s + 0.718·31-s + 0.522·33-s + 0.328·37-s + 0.960·39-s − 0.937·41-s − 1.06·43-s − 0.894·45-s + 0.875·47-s + 0.980·51-s − 1.37·53-s + 1.21·55-s + 0.397·57-s + 0.520·59-s − 0.640·61-s + 2.23·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 179536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 179536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(179536\)    =    \(2^{4} \cdot 7^{2} \cdot 229\)
Sign: $1$
Analytic conductor: \(1433.60\)
Root analytic conductor: \(37.8629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 179536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.165319942\)
\(L(\frac12)\) \(\approx\) \(6.165319942\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
229 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26433162535351, −12.93196810799288, −12.12439069293868, −11.76581289247829, −11.35398196545645, −10.74688629036914, −10.16360576317248, −9.791224248316127, −9.350003429606506, −8.962414972520663, −8.460738416121698, −7.898426750420257, −7.608580993703160, −6.622040694396672, −6.254593039241817, −5.950500566665445, −5.369972387025686, −5.015276107181209, −3.892358319308495, −3.591261961819793, −3.198961982681394, −2.425410645081868, −1.762443990321404, −1.383000311796983, −0.6979394958741172, 0.6979394958741172, 1.383000311796983, 1.762443990321404, 2.425410645081868, 3.198961982681394, 3.591261961819793, 3.892358319308495, 5.015276107181209, 5.369972387025686, 5.950500566665445, 6.254593039241817, 6.622040694396672, 7.608580993703160, 7.898426750420257, 8.460738416121698, 8.962414972520663, 9.350003429606506, 9.791224248316127, 10.16360576317248, 10.74688629036914, 11.35398196545645, 11.76581289247829, 12.12439069293868, 12.93196810799288, 13.26433162535351

Graph of the $Z$-function along the critical line