Properties

Label 2-178464-1.1-c1-0-49
Degree $2$
Conductor $178464$
Sign $-1$
Analytic cond. $1425.04$
Root an. cond. $37.7497$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s − 2·7-s + 9-s − 11-s − 4·15-s + 2·17-s + 4·19-s + 2·21-s − 6·23-s + 11·25-s − 27-s − 6·29-s + 4·31-s + 33-s − 8·35-s + 2·37-s − 6·41-s − 8·43-s + 4·45-s + 10·47-s − 3·49-s − 2·51-s − 12·53-s − 4·55-s − 4·57-s + 8·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 1.03·15-s + 0.485·17-s + 0.917·19-s + 0.436·21-s − 1.25·23-s + 11/5·25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s + 0.174·33-s − 1.35·35-s + 0.328·37-s − 0.937·41-s − 1.21·43-s + 0.596·45-s + 1.45·47-s − 3/7·49-s − 0.280·51-s − 1.64·53-s − 0.539·55-s − 0.529·57-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178464\)    =    \(2^{5} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1425.04\)
Root analytic conductor: \(37.7497\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27109966076374, −13.07706127009640, −12.57267996473690, −11.99795088696488, −11.58509508264352, −10.99101160410556, −10.29189403476998, −10.12593901223924, −9.689611566400095, −9.402137895319775, −8.767463488441193, −8.146037065971711, −7.509366665601754, −7.026256235260846, −6.321060341082433, −6.145959326178263, −5.697643249746203, −5.080421138367335, −4.858235416786414, −3.834927067544348, −3.352481964968773, −2.699925535363522, −2.079420636079522, −1.576261235497646, −0.8801378320701893, 0, 0.8801378320701893, 1.576261235497646, 2.079420636079522, 2.699925535363522, 3.352481964968773, 3.834927067544348, 4.858235416786414, 5.080421138367335, 5.697643249746203, 6.145959326178263, 6.321060341082433, 7.026256235260846, 7.509366665601754, 8.146037065971711, 8.767463488441193, 9.402137895319775, 9.689611566400095, 10.12593901223924, 10.29189403476998, 10.99101160410556, 11.58509508264352, 11.99795088696488, 12.57267996473690, 13.07706127009640, 13.27109966076374

Graph of the $Z$-function along the critical line