Properties

Label 2-177870-1.1-c1-0-71
Degree $2$
Conductor $177870$
Sign $1$
Analytic cond. $1420.29$
Root an. cond. $37.6868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 12-s + 6·13-s − 15-s + 16-s + 2·17-s − 18-s − 4·19-s − 20-s − 24-s + 25-s − 6·26-s + 27-s + 10·29-s + 30-s − 32-s − 2·34-s + 36-s + 6·37-s + 4·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 1.66·13-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.204·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 1.85·29-s + 0.182·30-s − 0.176·32-s − 0.342·34-s + 1/6·36-s + 0.986·37-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177870\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1420.29\)
Root analytic conductor: \(37.6868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 177870,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.568162078\)
\(L(\frac12)\) \(\approx\) \(2.568162078\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19289581273586, −12.71125411220735, −12.09911157181303, −11.82782521966749, −11.02043650919975, −10.86055648282063, −10.34771106971765, −9.827383468833422, −9.246708277397060, −8.810951106513139, −8.310940855220700, −8.115656937354966, −7.605334729553178, −6.839909754737622, −6.544880416443280, −5.987904406129502, −5.466760950353856, −4.456468471708070, −4.285110523928950, −3.516882048272913, −3.034907611049958, −2.526411937239580, −1.693548991080971, −1.162151391121539, −0.5496751808076520, 0.5496751808076520, 1.162151391121539, 1.693548991080971, 2.526411937239580, 3.034907611049958, 3.516882048272913, 4.285110523928950, 4.456468471708070, 5.466760950353856, 5.987904406129502, 6.544880416443280, 6.839909754737622, 7.605334729553178, 8.115656937354966, 8.310940855220700, 8.810951106513139, 9.246708277397060, 9.827383468833422, 10.34771106971765, 10.86055648282063, 11.02043650919975, 11.82782521966749, 12.09911157181303, 12.71125411220735, 13.19289581273586

Graph of the $Z$-function along the critical line