Properties

Label 2-177870-1.1-c1-0-233
Degree $2$
Conductor $177870$
Sign $1$
Analytic cond. $1420.29$
Root an. cond. $37.6868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 15-s + 16-s − 18-s − 4·19-s + 20-s − 7·23-s + 24-s + 25-s − 27-s − 5·29-s + 30-s + 6·31-s − 32-s + 36-s − 4·37-s + 4·38-s − 40-s − 5·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.917·19-s + 0.223·20-s − 1.45·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.928·29-s + 0.182·30-s + 1.07·31-s − 0.176·32-s + 1/6·36-s − 0.657·37-s + 0.648·38-s − 0.158·40-s − 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177870 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177870\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1420.29\)
Root analytic conductor: \(37.6868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 177870,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 \)
good13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48782277648287, −13.20271492190992, −12.63253236200185, −12.02812763596468, −11.78689975476495, −11.23798085240788, −10.75604604194978, −10.21064834886497, −9.914226931207047, −9.579854082133490, −8.827247925572858, −8.319287848270339, −8.097660741167904, −7.346651364975692, −6.806352489167282, −6.374436813372869, −6.036028605406988, −5.378461829154240, −4.881555961699361, −4.278797847852475, −3.609459441653190, −3.034398401772201, −2.197494193696983, −1.760093159163311, −1.242007305643967, 0, 0, 1.242007305643967, 1.760093159163311, 2.197494193696983, 3.034398401772201, 3.609459441653190, 4.278797847852475, 4.881555961699361, 5.378461829154240, 6.036028605406988, 6.374436813372869, 6.806352489167282, 7.346651364975692, 8.097660741167904, 8.319287848270339, 8.827247925572858, 9.579854082133490, 9.914226931207047, 10.21064834886497, 10.75604604194978, 11.23798085240788, 11.78689975476495, 12.02812763596468, 12.63253236200185, 13.20271492190992, 13.48782277648287

Graph of the $Z$-function along the critical line