Properties

Label 2-17784-1.1-c1-0-13
Degree $2$
Conductor $17784$
Sign $-1$
Analytic cond. $142.005$
Root an. cond. $11.9166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s − 13-s + 3·17-s + 19-s − 23-s − 5·25-s + 2·29-s + 3·31-s − 5·37-s − 7·41-s − 3·43-s + 2·47-s − 3·49-s + 6·53-s − 59-s − 5·61-s + 3·67-s + 12·71-s − 8·77-s − 10·79-s − 18·83-s − 10·89-s + 2·91-s + 13·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s − 0.277·13-s + 0.727·17-s + 0.229·19-s − 0.208·23-s − 25-s + 0.371·29-s + 0.538·31-s − 0.821·37-s − 1.09·41-s − 0.457·43-s + 0.291·47-s − 3/7·49-s + 0.824·53-s − 0.130·59-s − 0.640·61-s + 0.366·67-s + 1.42·71-s − 0.911·77-s − 1.12·79-s − 1.97·83-s − 1.05·89-s + 0.209·91-s + 1.31·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17784\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(142.005\)
Root analytic conductor: \(11.9166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17784,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.00259818598353, −15.62299367642131, −15.03754189353076, −14.33495799596883, −13.95059003946614, −13.44466375653400, −12.68248915555421, −12.19165836983747, −11.74317591826831, −11.24820761899399, −10.24189194258763, −9.952163799360214, −9.457224742924001, −8.729861201577434, −8.226055218449996, −7.399035993629699, −6.861946589415342, −6.295268232089793, −5.702085480924754, −4.964314153811326, −4.123842322889729, −3.554452735949484, −2.943542497012699, −1.932291259248875, −1.130974961373579, 0, 1.130974961373579, 1.932291259248875, 2.943542497012699, 3.554452735949484, 4.123842322889729, 4.964314153811326, 5.702085480924754, 6.295268232089793, 6.861946589415342, 7.399035993629699, 8.226055218449996, 8.729861201577434, 9.457224742924001, 9.952163799360214, 10.24189194258763, 11.24820761899399, 11.74317591826831, 12.19165836983747, 12.68248915555421, 13.44466375653400, 13.95059003946614, 14.33495799596883, 15.03754189353076, 15.62299367642131, 16.00259818598353

Graph of the $Z$-function along the critical line