Properties

Label 2-177450-1.1-c1-0-98
Degree $2$
Conductor $177450$
Sign $1$
Analytic cond. $1416.94$
Root an. cond. $37.6423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 6·11-s + 12-s − 14-s + 16-s + 6·17-s − 18-s + 6·19-s + 21-s − 6·22-s − 2·23-s − 24-s + 27-s + 28-s − 6·29-s + 4·31-s − 32-s + 6·33-s − 6·34-s + 36-s − 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s − 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.37·19-s + 0.218·21-s − 1.27·22-s − 0.417·23-s − 0.204·24-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.04·33-s − 1.02·34-s + 1/6·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1416.94\)
Root analytic conductor: \(37.6423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 177450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.650059321\)
\(L(\frac12)\) \(\approx\) \(3.650059321\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30356727920397, −12.40794804091680, −12.11961506046011, −11.87640764749929, −11.27748668904297, −10.79740643112537, −10.16240598310771, −9.688276285021297, −9.367922660183149, −9.009237170440699, −8.392907632280261, −7.915821604353919, −7.437815907478363, −7.160893108142612, −6.326051253493476, −6.095864904371013, −5.291902919339613, −4.834925478639402, −4.009581568511514, −3.438615706901036, −3.289873476629441, −2.336622988148995, −1.586631810219707, −1.333678739213376, −0.6309191467529012, 0.6309191467529012, 1.333678739213376, 1.586631810219707, 2.336622988148995, 3.289873476629441, 3.438615706901036, 4.009581568511514, 4.834925478639402, 5.291902919339613, 6.095864904371013, 6.326051253493476, 7.160893108142612, 7.437815907478363, 7.915821604353919, 8.392907632280261, 9.009237170440699, 9.367922660183149, 9.688276285021297, 10.16240598310771, 10.79740643112537, 11.27748668904297, 11.87640764749929, 12.11961506046011, 12.40794804091680, 13.30356727920397

Graph of the $Z$-function along the critical line