Properties

Label 2-177450-1.1-c1-0-167
Degree $2$
Conductor $177450$
Sign $-1$
Analytic cond. $1416.94$
Root an. cond. $37.6423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 7-s − 8-s + 9-s − 6·11-s + 12-s + 14-s + 16-s + 2·17-s − 18-s + 4·19-s − 21-s + 6·22-s + 6·23-s − 24-s + 27-s − 28-s + 2·29-s − 4·31-s − 32-s − 6·33-s − 2·34-s + 36-s − 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 0.267·14-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.218·21-s + 1.27·22-s + 1.25·23-s − 0.204·24-s + 0.192·27-s − 0.188·28-s + 0.371·29-s − 0.718·31-s − 0.176·32-s − 1.04·33-s − 0.342·34-s + 1/6·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1416.94\)
Root analytic conductor: \(37.6423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 177450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33484983723614, −13.01852451671439, −12.40209635228338, −12.15458334654748, −11.37686203504879, −10.85256126897400, −10.51238480746258, −10.07939325802599, −9.614301528399032, −9.058664165001115, −8.711722492135630, −8.161089834495482, −7.592691767947854, −7.303571527259928, −6.965358707430057, −6.093419139076685, −5.516478113469160, −5.222340238608613, −4.538808675827476, −3.688702943297133, −3.240589562081073, −2.589164499590989, −2.416432621022968, −1.410182868354167, −0.8166573540359391, 0, 0.8166573540359391, 1.410182868354167, 2.416432621022968, 2.589164499590989, 3.240589562081073, 3.688702943297133, 4.538808675827476, 5.222340238608613, 5.516478113469160, 6.093419139076685, 6.965358707430057, 7.303571527259928, 7.592691767947854, 8.161089834495482, 8.711722492135630, 9.058664165001115, 9.614301528399032, 10.07939325802599, 10.51238480746258, 10.85256126897400, 11.37686203504879, 12.15458334654748, 12.40209635228338, 13.01852451671439, 13.33484983723614

Graph of the $Z$-function along the critical line