Properties

Label 2-177450-1.1-c1-0-149
Degree $2$
Conductor $177450$
Sign $-1$
Analytic cond. $1416.94$
Root an. cond. $37.6423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s + 3·11-s − 12-s + 14-s + 16-s + 4·17-s − 18-s + 7·19-s + 21-s − 3·22-s + 2·23-s + 24-s − 27-s − 28-s − 2·29-s − 5·31-s − 32-s − 3·33-s − 4·34-s + 36-s − 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.904·11-s − 0.288·12-s + 0.267·14-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 1.60·19-s + 0.218·21-s − 0.639·22-s + 0.417·23-s + 0.204·24-s − 0.192·27-s − 0.188·28-s − 0.371·29-s − 0.898·31-s − 0.176·32-s − 0.522·33-s − 0.685·34-s + 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177450\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1416.94\)
Root analytic conductor: \(37.6423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 177450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45084398281506, −12.80204043786574, −12.19266948297150, −12.00853565067624, −11.52523102642505, −11.08729199112374, −10.50686954440176, −10.01819068260138, −9.654809489566747, −9.217524514418409, −8.769475717075567, −8.097463193272560, −7.609353416518023, −7.054797894772949, −6.800508811837863, −6.171208340124837, −5.560878721244815, −5.264563060807470, −4.601810204432939, −3.745718812657262, −3.329020462374236, −2.934465255393909, −1.749329066915663, −1.509275279121755, −0.7740339446070341, 0, 0.7740339446070341, 1.509275279121755, 1.749329066915663, 2.934465255393909, 3.329020462374236, 3.745718812657262, 4.601810204432939, 5.264563060807470, 5.560878721244815, 6.171208340124837, 6.800508811837863, 7.054797894772949, 7.609353416518023, 8.097463193272560, 8.769475717075567, 9.217524514418409, 9.654809489566747, 10.01819068260138, 10.50686954440176, 11.08729199112374, 11.52523102642505, 12.00853565067624, 12.19266948297150, 12.80204043786574, 13.45084398281506

Graph of the $Z$-function along the critical line