Dirichlet series
| L(s) = 1 | − 6·11-s − 7·13-s + 4·17-s − 5·19-s + 6·23-s + 4·29-s − 8·31-s + 37-s − 2·41-s − 4·43-s + 8·47-s − 8·53-s + 5·61-s + 5·67-s + 4·71-s + 73-s − 11·79-s − 16·83-s + 12·89-s − 11·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
| L(s) = 1 | − 1.80·11-s − 1.94·13-s + 0.970·17-s − 1.14·19-s + 1.25·23-s + 0.742·29-s − 1.43·31-s + 0.164·37-s − 0.312·41-s − 0.609·43-s + 1.16·47-s − 1.09·53-s + 0.640·61-s + 0.610·67-s + 0.474·71-s + 0.117·73-s − 1.23·79-s − 1.75·83-s + 1.27·89-s − 1.11·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
Functional equation
Invariants
| Degree: | \(2\) |
| Conductor: | \(176400\) = \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) |
| Sign: | $-1$ |
| Analytic conductor: | \(1408.56\) |
| Root analytic conductor: | \(37.5308\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(1\) |
| Selberg data: | \((2,\ 176400,\ (\ :1/2),\ -1)\) |
Particular Values
| \(L(1)\) | \(=\) | \(0\) |
| \(L(\frac12)\) | \(=\) | \(0\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | ||
| 5 | \( 1 \) | ||
| 7 | \( 1 \) | ||
| good | 11 | \( 1 + 6 T + p T^{2} \) | 1.11.g |
| 13 | \( 1 + 7 T + p T^{2} \) | 1.13.h | |
| 17 | \( 1 - 4 T + p T^{2} \) | 1.17.ae | |
| 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f | |
| 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag | |
| 29 | \( 1 - 4 T + p T^{2} \) | 1.29.ae | |
| 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | |
| 37 | \( 1 - T + p T^{2} \) | 1.37.ab | |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c | |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | |
| 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | |
| 53 | \( 1 + 8 T + p T^{2} \) | 1.53.i | |
| 59 | \( 1 + p T^{2} \) | 1.59.a | |
| 61 | \( 1 - 5 T + p T^{2} \) | 1.61.af | |
| 67 | \( 1 - 5 T + p T^{2} \) | 1.67.af | |
| 71 | \( 1 - 4 T + p T^{2} \) | 1.71.ae | |
| 73 | \( 1 - T + p T^{2} \) | 1.73.ab | |
| 79 | \( 1 + 11 T + p T^{2} \) | 1.79.l | |
| 83 | \( 1 + 16 T + p T^{2} \) | 1.83.q | |
| 89 | \( 1 - 12 T + p T^{2} \) | 1.89.am | |
| 97 | \( 1 + 11 T + p T^{2} \) | 1.97.l | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−13.20596011837040, −12.90158945884640, −12.50621003157493, −12.23406806859128, −11.48480256456819, −10.98610426568315, −10.47716887208142, −10.22269238450560, −9.630447974303475, −9.292171714669152, −8.411732206196483, −8.244108781769280, −7.530222060267304, −7.223823607010502, −6.834165891043539, −5.982216474187259, −5.404938122685545, −5.107885993369040, −4.675192869973766, −4.018009440436737, −3.150566890038706, −2.775444528309910, −2.302068653306595, −1.648814342830649, −0.6065096037100650, 0, 0.6065096037100650, 1.648814342830649, 2.302068653306595, 2.775444528309910, 3.150566890038706, 4.018009440436737, 4.675192869973766, 5.107885993369040, 5.404938122685545, 5.982216474187259, 6.834165891043539, 7.223823607010502, 7.530222060267304, 8.244108781769280, 8.411732206196483, 9.292171714669152, 9.630447974303475, 10.22269238450560, 10.47716887208142, 10.98610426568315, 11.48480256456819, 12.23406806859128, 12.50621003157493, 12.90158945884640, 13.20596011837040