Properties

Label 2-17600-1.1-c1-0-35
Degree $2$
Conductor $17600$
Sign $-1$
Analytic cond. $140.536$
Root an. cond. $11.8548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s − 2·9-s − 11-s − 6·13-s + 7·17-s − 5·19-s + 3·21-s + 6·23-s + 5·27-s − 5·29-s − 3·31-s + 33-s + 3·37-s + 6·39-s + 2·41-s + 4·43-s + 2·47-s + 2·49-s − 7·51-s − 53-s + 5·57-s + 10·59-s − 7·61-s + 6·63-s + 8·67-s − 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s − 2/3·9-s − 0.301·11-s − 1.66·13-s + 1.69·17-s − 1.14·19-s + 0.654·21-s + 1.25·23-s + 0.962·27-s − 0.928·29-s − 0.538·31-s + 0.174·33-s + 0.493·37-s + 0.960·39-s + 0.312·41-s + 0.609·43-s + 0.291·47-s + 2/7·49-s − 0.980·51-s − 0.137·53-s + 0.662·57-s + 1.30·59-s − 0.896·61-s + 0.755·63-s + 0.977·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17600\)    =    \(2^{6} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(140.536\)
Root analytic conductor: \(11.8548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.36684128961547, −15.55952978489169, −14.91520159182080, −14.55661384144285, −14.05400981030000, −13.07854149408006, −12.65607411070528, −12.44544898793786, −11.67511976525680, −11.12789250184150, −10.46585273688584, −9.961434777751106, −9.444965013786979, −8.883313181348262, −8.049595678561631, −7.388395125465840, −6.935926442418321, −6.158850313397233, −5.597182150390908, −5.150450298037823, −4.348251827485692, −3.390646486245590, −2.874315025825923, −2.160288364082797, −0.7889478788010654, 0, 0.7889478788010654, 2.160288364082797, 2.874315025825923, 3.390646486245590, 4.348251827485692, 5.150450298037823, 5.597182150390908, 6.158850313397233, 6.935926442418321, 7.388395125465840, 8.049595678561631, 8.883313181348262, 9.444965013786979, 9.961434777751106, 10.46585273688584, 11.12789250184150, 11.67511976525680, 12.44544898793786, 12.65607411070528, 13.07854149408006, 14.05400981030000, 14.55661384144285, 14.91520159182080, 15.55952978489169, 16.36684128961547

Graph of the $Z$-function along the critical line