Properties

Label 2-167310-1.1-c1-0-10
Degree $2$
Conductor $167310$
Sign $1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s − 11-s + 2·14-s + 16-s − 6·17-s + 7·19-s − 20-s + 22-s + 3·23-s + 25-s − 2·28-s + 3·29-s − 8·31-s − 32-s + 6·34-s + 2·35-s − 2·37-s − 7·38-s + 40-s − 43-s − 44-s − 3·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 0.534·14-s + 1/4·16-s − 1.45·17-s + 1.60·19-s − 0.223·20-s + 0.213·22-s + 0.625·23-s + 1/5·25-s − 0.377·28-s + 0.557·29-s − 1.43·31-s − 0.176·32-s + 1.02·34-s + 0.338·35-s − 0.328·37-s − 1.13·38-s + 0.158·40-s − 0.152·43-s − 0.150·44-s − 0.442·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9894399490\)
\(L(\frac12)\) \(\approx\) \(0.9894399490\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24067750281716, −12.73599079832790, −12.20198677926595, −11.75275146197958, −11.27525013821426, −10.80974059952141, −10.45171059289495, −9.756808428667264, −9.397676950201454, −9.009126345649777, −8.455601495611362, −8.010126094277252, −7.307892148303366, −7.008946809815218, −6.664020138868197, −5.931578442648515, −5.340716581868148, −4.939850189232256, −4.082663349457730, −3.614377294391092, −3.023106459507613, −2.500383297486003, −1.843997906416556, −0.9738448103970154, −0.3827920051818086, 0.3827920051818086, 0.9738448103970154, 1.843997906416556, 2.500383297486003, 3.023106459507613, 3.614377294391092, 4.082663349457730, 4.939850189232256, 5.340716581868148, 5.931578442648515, 6.664020138868197, 7.008946809815218, 7.307892148303366, 8.010126094277252, 8.455601495611362, 9.009126345649777, 9.397676950201454, 9.756808428667264, 10.45171059289495, 10.80974059952141, 11.27525013821426, 11.75275146197958, 12.20198677926595, 12.73599079832790, 13.24067750281716

Graph of the $Z$-function along the critical line