Properties

Label 2-16704-1.1-c1-0-52
Degree $2$
Conductor $16704$
Sign $-1$
Analytic cond. $133.382$
Root an. cond. $11.5491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 2·11-s + 3·17-s + 19-s + 4·23-s − 4·25-s + 29-s + 4·31-s − 35-s − 3·37-s + 7·41-s − 9·43-s + 47-s − 6·49-s − 2·53-s + 2·55-s − 3·59-s − 6·61-s − 12·67-s − 16·71-s − 10·73-s − 2·77-s + 10·79-s − 3·85-s − 6·89-s − 95-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 0.603·11-s + 0.727·17-s + 0.229·19-s + 0.834·23-s − 4/5·25-s + 0.185·29-s + 0.718·31-s − 0.169·35-s − 0.493·37-s + 1.09·41-s − 1.37·43-s + 0.145·47-s − 6/7·49-s − 0.274·53-s + 0.269·55-s − 0.390·59-s − 0.768·61-s − 1.46·67-s − 1.89·71-s − 1.17·73-s − 0.227·77-s + 1.12·79-s − 0.325·85-s − 0.635·89-s − 0.102·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16704\)    =    \(2^{6} \cdot 3^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(133.382\)
Root analytic conductor: \(11.5491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
29 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.17957845132688, −15.47226314190743, −15.28069636479297, −14.44274441251394, −14.13051336810200, −13.24457510679568, −13.04711853535023, −12.04266444998118, −11.88397302745961, −11.17813612569588, −10.55677491534673, −10.06765306099521, −9.403464068116130, −8.692633651448434, −8.136372399607573, −7.550468288015790, −7.165933846203757, −6.167004381071266, −5.703907549026153, −4.790709965475142, −4.510285399183342, −3.392256148267414, −3.016487489881610, −1.968181428827693, −1.116618148775415, 0, 1.116618148775415, 1.968181428827693, 3.016487489881610, 3.392256148267414, 4.510285399183342, 4.790709965475142, 5.703907549026153, 6.167004381071266, 7.165933846203757, 7.550468288015790, 8.136372399607573, 8.692633651448434, 9.403464068116130, 10.06765306099521, 10.55677491534673, 11.17813612569588, 11.88397302745961, 12.04266444998118, 13.04711853535023, 13.24457510679568, 14.13051336810200, 14.44274441251394, 15.28069636479297, 15.47226314190743, 16.17957845132688

Graph of the $Z$-function along the critical line