Properties

Label 2-16606-1.1-c1-0-13
Degree $2$
Conductor $16606$
Sign $-1$
Analytic cond. $132.599$
Root an. cond. $11.5151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3·5-s + 6-s + 2·7-s − 8-s − 2·9-s − 3·10-s − 3·11-s − 12-s − 2·13-s − 2·14-s − 3·15-s + 16-s + 2·18-s + 3·20-s − 2·21-s + 3·22-s + 23-s + 24-s + 4·25-s + 2·26-s + 5·27-s + 2·28-s + 3·29-s + 3·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.755·7-s − 0.353·8-s − 2/3·9-s − 0.948·10-s − 0.904·11-s − 0.288·12-s − 0.554·13-s − 0.534·14-s − 0.774·15-s + 1/4·16-s + 0.471·18-s + 0.670·20-s − 0.436·21-s + 0.639·22-s + 0.208·23-s + 0.204·24-s + 4/5·25-s + 0.392·26-s + 0.962·27-s + 0.377·28-s + 0.557·29-s + 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16606 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16606 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16606\)    =    \(2 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.599\)
Root analytic conductor: \(11.5151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16606,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
19 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.62546887243319, −15.64877449103059, −15.15078056702886, −14.56893682963185, −13.89564240323203, −13.57634461220494, −12.79935506151184, −12.17752237175578, −11.57593332011282, −11.10029422978687, −10.36800538678750, −10.16450300292292, −9.457600533690560, −8.846206734231121, −8.127960558437572, −7.816513911746705, −6.727877010863940, −6.406206116932207, −5.628514966881602, −5.110001240627924, −4.721653234099573, −3.265214128892579, −2.546710609763996, −1.968290477594983, −1.094460745298878, 0, 1.094460745298878, 1.968290477594983, 2.546710609763996, 3.265214128892579, 4.721653234099573, 5.110001240627924, 5.628514966881602, 6.406206116932207, 6.727877010863940, 7.816513911746705, 8.127960558437572, 8.846206734231121, 9.457600533690560, 10.16450300292292, 10.36800538678750, 11.10029422978687, 11.57593332011282, 12.17752237175578, 12.79935506151184, 13.57634461220494, 13.89564240323203, 14.56893682963185, 15.15078056702886, 15.64877449103059, 16.62546887243319

Graph of the $Z$-function along the critical line