Properties

Label 2-165825-1.1-c1-0-3
Degree $2$
Conductor $165825$
Sign $1$
Analytic cond. $1324.11$
Root an. cond. $36.3884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 2·7-s + 3·8-s + 11-s + 2·14-s − 16-s − 2·17-s + 8·19-s − 22-s + 6·23-s + 2·28-s + 10·29-s + 4·31-s − 5·32-s + 2·34-s − 6·37-s − 8·38-s + 6·41-s − 10·43-s − 44-s − 6·46-s − 6·47-s − 3·49-s − 6·53-s − 6·56-s − 10·58-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.755·7-s + 1.06·8-s + 0.301·11-s + 0.534·14-s − 1/4·16-s − 0.485·17-s + 1.83·19-s − 0.213·22-s + 1.25·23-s + 0.377·28-s + 1.85·29-s + 0.718·31-s − 0.883·32-s + 0.342·34-s − 0.986·37-s − 1.29·38-s + 0.937·41-s − 1.52·43-s − 0.150·44-s − 0.884·46-s − 0.875·47-s − 3/7·49-s − 0.824·53-s − 0.801·56-s − 1.31·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165825\)    =    \(3^{2} \cdot 5^{2} \cdot 11 \cdot 67\)
Sign: $1$
Analytic conductor: \(1324.11\)
Root analytic conductor: \(36.3884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 165825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9378907124\)
\(L(\frac12)\) \(\approx\) \(0.9378907124\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
67 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 12 T + p T^{2} \) 1.61.m
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35934960393767, −12.78174554623512, −12.25493801557938, −11.90029160679101, −11.13510769257813, −10.91210932492274, −10.12845321914871, −9.739918520520941, −9.626732454450589, −8.837627049171506, −8.620123804660612, −8.064446036617906, −7.388465334307273, −7.075718538879166, −6.471372404576620, −6.023124110860962, −5.164117845156744, −4.811557779207809, −4.424814557817649, −3.417093792266995, −3.229208036266096, −2.582746211274982, −1.457707109222283, −1.193174584341688, −0.3609167381848429, 0.3609167381848429, 1.193174584341688, 1.457707109222283, 2.582746211274982, 3.229208036266096, 3.417093792266995, 4.424814557817649, 4.811557779207809, 5.164117845156744, 6.023124110860962, 6.471372404576620, 7.075718538879166, 7.388465334307273, 8.064446036617906, 8.620123804660612, 8.837627049171506, 9.626732454450589, 9.739918520520941, 10.12845321914871, 10.91210932492274, 11.13510769257813, 11.90029160679101, 12.25493801557938, 12.78174554623512, 13.35934960393767

Graph of the $Z$-function along the critical line