L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 2·7-s + 8-s + 9-s + 11-s − 12-s − 5·13-s − 2·14-s + 16-s + 18-s − 19-s + 2·21-s + 22-s − 3·23-s − 24-s − 5·26-s − 27-s − 2·28-s − 3·29-s − 31-s + 32-s − 33-s + 36-s − 2·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s − 1.38·13-s − 0.534·14-s + 1/4·16-s + 0.235·18-s − 0.229·19-s + 0.436·21-s + 0.213·22-s − 0.625·23-s − 0.204·24-s − 0.980·26-s − 0.192·27-s − 0.377·28-s − 0.557·29-s − 0.179·31-s + 0.176·32-s − 0.174·33-s + 1/6·36-s − 0.328·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 + T \) | |
| 5 | \( 1 \) | |
| 11 | \( 1 - T \) | |
good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 13 | \( 1 + 5 T + p T^{2} \) | 1.13.f |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 + T + p T^{2} \) | 1.19.b |
| 23 | \( 1 + 3 T + p T^{2} \) | 1.23.d |
| 29 | \( 1 + 3 T + p T^{2} \) | 1.29.d |
| 31 | \( 1 + T + p T^{2} \) | 1.31.b |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g |
| 43 | \( 1 + 11 T + p T^{2} \) | 1.43.l |
| 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am |
| 53 | \( 1 + 12 T + p T^{2} \) | 1.53.m |
| 59 | \( 1 - 6 T + p T^{2} \) | 1.59.ag |
| 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac |
| 67 | \( 1 + 2 T + p T^{2} \) | 1.67.c |
| 71 | \( 1 + 9 T + p T^{2} \) | 1.71.j |
| 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c |
| 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai |
| 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j |
| 89 | \( 1 + 3 T + p T^{2} \) | 1.89.d |
| 97 | \( 1 - T + p T^{2} \) | 1.97.ab |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.156244280454708134450312275826, −7.969136741921341425534316812431, −7.07744747214906615370505259810, −6.52739624216278198567370709639, −5.64005642648137234938569351269, −4.89205306957861184562322358933, −3.98925124643044469311936222649, −3.01101545412196114935341038154, −1.85101131623505217147023401593, 0,
1.85101131623505217147023401593, 3.01101545412196114935341038154, 3.98925124643044469311936222649, 4.89205306957861184562322358933, 5.64005642648137234938569351269, 6.52739624216278198567370709639, 7.07744747214906615370505259810, 7.969136741921341425534316812431, 9.156244280454708134450312275826