Properties

Label 2-1650-1.1-c1-0-31
Degree $2$
Conductor $1650$
Sign $-1$
Analytic cond. $13.1753$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 2·7-s + 8-s + 9-s + 11-s − 12-s − 5·13-s − 2·14-s + 16-s + 18-s − 19-s + 2·21-s + 22-s − 3·23-s − 24-s − 5·26-s − 27-s − 2·28-s − 3·29-s − 31-s + 32-s − 33-s + 36-s − 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s − 1.38·13-s − 0.534·14-s + 1/4·16-s + 0.235·18-s − 0.229·19-s + 0.436·21-s + 0.213·22-s − 0.625·23-s − 0.204·24-s − 0.980·26-s − 0.192·27-s − 0.377·28-s − 0.557·29-s − 0.179·31-s + 0.176·32-s − 0.174·33-s + 1/6·36-s − 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(13.1753\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.156244280454708134450312275826, −7.969136741921341425534316812431, −7.07744747214906615370505259810, −6.52739624216278198567370709639, −5.64005642648137234938569351269, −4.89205306957861184562322358933, −3.98925124643044469311936222649, −3.01101545412196114935341038154, −1.85101131623505217147023401593, 0, 1.85101131623505217147023401593, 3.01101545412196114935341038154, 3.98925124643044469311936222649, 4.89205306957861184562322358933, 5.64005642648137234938569351269, 6.52739624216278198567370709639, 7.07744747214906615370505259810, 7.969136741921341425534316812431, 9.156244280454708134450312275826

Graph of the $Z$-function along the critical line