Properties

Label 2-162288-1.1-c1-0-101
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·11-s − 2·13-s + 2·17-s − 2·19-s + 23-s + 11·25-s + 6·29-s + 4·37-s − 10·41-s + 10·43-s + 8·47-s − 8·55-s + 4·61-s + 8·65-s − 2·67-s + 8·71-s + 2·73-s + 8·79-s + 6·83-s − 8·85-s + 6·89-s + 8·95-s + 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.603·11-s − 0.554·13-s + 0.485·17-s − 0.458·19-s + 0.208·23-s + 11/5·25-s + 1.11·29-s + 0.657·37-s − 1.56·41-s + 1.52·43-s + 1.16·47-s − 1.07·55-s + 0.512·61-s + 0.992·65-s − 0.244·67-s + 0.949·71-s + 0.234·73-s + 0.900·79-s + 0.658·83-s − 0.867·85-s + 0.635·89-s + 0.820·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51597567800066, −12.85543188676658, −12.32950379627651, −12.06002300126397, −11.80744683963860, −11.11466914126041, −10.78338462545411, −10.29238055670845, −9.642680019374952, −9.067677537753942, −8.678157328452463, −7.992219605448002, −7.860002030639425, −7.242043813930900, −6.696961145778875, −6.405318867924262, −5.469659135168385, −4.993335470235922, −4.414981994476572, −3.929577382909732, −3.610889628827016, −2.821221750073094, −2.403814407503417, −1.293008856700023, −0.7623321430658803, 0, 0.7623321430658803, 1.293008856700023, 2.403814407503417, 2.821221750073094, 3.610889628827016, 3.929577382909732, 4.414981994476572, 4.993335470235922, 5.469659135168385, 6.405318867924262, 6.696961145778875, 7.242043813930900, 7.860002030639425, 7.992219605448002, 8.678157328452463, 9.067677537753942, 9.642680019374952, 10.29238055670845, 10.78338462545411, 11.11466914126041, 11.80744683963860, 12.06002300126397, 12.32950379627651, 12.85543188676658, 13.51597567800066

Graph of the $Z$-function along the critical line