Properties

Label 2-162288-1.1-c1-0-170
Degree $2$
Conductor $162288$
Sign $1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·11-s + 3·13-s + 2·17-s − 5·19-s + 23-s − 25-s − 2·29-s − 7·31-s − 11·37-s − 6·41-s + 9·43-s − 12·47-s + 8·53-s + 8·55-s − 6·59-s + 10·61-s − 6·65-s + 3·67-s − 8·71-s − 73-s − 17·79-s + 14·83-s − 4·85-s − 6·89-s + 10·95-s + 10·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.20·11-s + 0.832·13-s + 0.485·17-s − 1.14·19-s + 0.208·23-s − 1/5·25-s − 0.371·29-s − 1.25·31-s − 1.80·37-s − 0.937·41-s + 1.37·43-s − 1.75·47-s + 1.09·53-s + 1.07·55-s − 0.781·59-s + 1.28·61-s − 0.744·65-s + 0.366·67-s − 0.949·71-s − 0.117·73-s − 1.91·79-s + 1.53·83-s − 0.433·85-s − 0.635·89-s + 1.02·95-s + 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50755302524129, −13.27710868223494, −12.81674030240826, −12.30195467946847, −11.90606461228003, −11.18415149008788, −11.04418319770395, −10.38071251804651, −10.16169492094810, −9.379005063559908, −8.767590767660591, −8.417279764405471, −8.024045450666017, −7.412316352850737, −7.096973226546830, −6.440938075349409, −5.786440757845978, −5.374893648025048, −4.834704261404731, −4.161593930397432, −3.625435120125512, −3.320542739109490, −2.488275218269712, −1.895979287952339, −1.189590652532774, 0, 0, 1.189590652532774, 1.895979287952339, 2.488275218269712, 3.320542739109490, 3.625435120125512, 4.161593930397432, 4.834704261404731, 5.374893648025048, 5.786440757845978, 6.440938075349409, 7.096973226546830, 7.412316352850737, 8.024045450666017, 8.417279764405471, 8.767590767660591, 9.379005063559908, 10.16169492094810, 10.38071251804651, 11.04418319770395, 11.18415149008788, 11.90606461228003, 12.30195467946847, 12.81674030240826, 13.27710868223494, 13.50755302524129

Graph of the $Z$-function along the critical line