L(s) = 1 | + 2-s − 3·3-s + 4-s − 3·5-s − 3·6-s − 3·7-s + 8-s + 6·9-s − 3·10-s − 2·11-s − 3·12-s − 5·13-s − 3·14-s + 9·15-s + 16-s + 6·17-s + 6·18-s − 3·20-s + 9·21-s − 2·22-s − 2·23-s − 3·24-s + 4·25-s − 5·26-s − 9·27-s − 3·28-s + 6·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.34·5-s − 1.22·6-s − 1.13·7-s + 0.353·8-s + 2·9-s − 0.948·10-s − 0.603·11-s − 0.866·12-s − 1.38·13-s − 0.801·14-s + 2.32·15-s + 1/4·16-s + 1.45·17-s + 1.41·18-s − 0.670·20-s + 1.96·21-s − 0.426·22-s − 0.417·23-s − 0.612·24-s + 4/5·25-s − 0.980·26-s − 1.73·27-s − 0.566·28-s + 1.11·29-s + ⋯ |
Λ(s)=(=(158s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(158s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1−T | |
| 79 | 1−T | |
good | 3 | 1+pT+pT2 | 1.3.d |
| 5 | 1+3T+pT2 | 1.5.d |
| 7 | 1+3T+pT2 | 1.7.d |
| 11 | 1+2T+pT2 | 1.11.c |
| 13 | 1+5T+pT2 | 1.13.f |
| 17 | 1−6T+pT2 | 1.17.ag |
| 19 | 1+pT2 | 1.19.a |
| 23 | 1+2T+pT2 | 1.23.c |
| 29 | 1−6T+pT2 | 1.29.ag |
| 31 | 1+10T+pT2 | 1.31.k |
| 37 | 1+10T+pT2 | 1.37.k |
| 41 | 1−2T+pT2 | 1.41.ac |
| 43 | 1−4T+pT2 | 1.43.ae |
| 47 | 1+3T+pT2 | 1.47.d |
| 53 | 1+12T+pT2 | 1.53.m |
| 59 | 1+T+pT2 | 1.59.b |
| 61 | 1−12T+pT2 | 1.61.am |
| 67 | 1+8T+pT2 | 1.67.i |
| 71 | 1+3T+pT2 | 1.71.d |
| 73 | 1+6T+pT2 | 1.73.g |
| 83 | 1−14T+pT2 | 1.83.ao |
| 89 | 1+7T+pT2 | 1.89.h |
| 97 | 1+11T+pT2 | 1.97.l |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.34878022289235219551388536645, −11.76229819783503690986272534976, −10.67275650162718779873054836109, −9.871463690263605580552418845308, −7.66138306465432851890178277032, −6.92116149525582118764831835825, −5.69924671275910195432130153357, −4.76932431908835403735443234199, −3.43543530646035424633948117891, 0,
3.43543530646035424633948117891, 4.76932431908835403735443234199, 5.69924671275910195432130153357, 6.92116149525582118764831835825, 7.66138306465432851890178277032, 9.871463690263605580552418845308, 10.67275650162718779873054836109, 11.76229819783503690986272534976, 12.34878022289235219551388536645