Properties

Label 2-15730-1.1-c1-0-27
Degree $2$
Conductor $15730$
Sign $-1$
Analytic cond. $125.604$
Root an. cond. $11.2073$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 2·7-s + 8-s − 2·9-s + 10-s − 12-s + 13-s + 2·14-s − 15-s + 16-s + 17-s − 2·18-s + 6·19-s + 20-s − 2·21-s − 9·23-s − 24-s + 25-s + 26-s + 5·27-s + 2·28-s − 5·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s + 0.277·13-s + 0.534·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.471·18-s + 1.37·19-s + 0.223·20-s − 0.436·21-s − 1.87·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.962·27-s + 0.377·28-s − 0.928·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15730\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(125.604\)
Root analytic conductor: \(11.2073\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15730,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.27251359438103, −15.75318716233322, −15.00589137235881, −14.55285742650321, −13.86439531736435, −13.75093128973572, −13.00031328089654, −12.11644998647781, −11.85418358043084, −11.39550649991884, −10.83089456451405, −10.04926742024252, −9.720930593784566, −8.686162552247920, −8.167291197982559, −7.581812224653428, −6.749582456442370, −6.155560954347093, −5.540018914342789, −5.189446767927238, −4.499398994210378, −3.573995638716090, −3.004757908663798, −1.953162480185760, −1.378827286293878, 0, 1.378827286293878, 1.953162480185760, 3.004757908663798, 3.573995638716090, 4.499398994210378, 5.189446767927238, 5.540018914342789, 6.155560954347093, 6.749582456442370, 7.581812224653428, 8.167291197982559, 8.686162552247920, 9.720930593784566, 10.04926742024252, 10.83089456451405, 11.39550649991884, 11.85418358043084, 12.11644998647781, 13.00031328089654, 13.75093128973572, 13.86439531736435, 14.55285742650321, 15.00589137235881, 15.75318716233322, 16.27251359438103

Graph of the $Z$-function along the critical line