Properties

Label 2-396e2-1.1-c1-0-26
Degree $2$
Conductor $156816$
Sign $-1$
Analytic cond. $1252.18$
Root an. cond. $35.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 4·7-s − 2·13-s + 6·17-s + 2·19-s − 3·23-s + 4·25-s + 6·29-s − 8·31-s + 12·35-s + 2·37-s + 8·43-s − 3·47-s + 9·49-s + 3·53-s − 8·61-s + 6·65-s + 13·67-s − 2·73-s + 2·79-s − 18·83-s − 18·85-s + 3·89-s + 8·91-s − 6·95-s + 2·97-s + 101-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.51·7-s − 0.554·13-s + 1.45·17-s + 0.458·19-s − 0.625·23-s + 4/5·25-s + 1.11·29-s − 1.43·31-s + 2.02·35-s + 0.328·37-s + 1.21·43-s − 0.437·47-s + 9/7·49-s + 0.412·53-s − 1.02·61-s + 0.744·65-s + 1.58·67-s − 0.234·73-s + 0.225·79-s − 1.97·83-s − 1.95·85-s + 0.317·89-s + 0.838·91-s − 0.615·95-s + 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(156816\)    =    \(2^{4} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1252.18\)
Root analytic conductor: \(35.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 156816,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38920658802096, −12.98519670233451, −12.37866939542061, −12.15570266576243, −11.92105066143001, −11.11558625590593, −10.74302593668604, −10.10364416122858, −9.639868206323314, −9.427298214500402, −8.668206688109040, −8.077281471416105, −7.750881554059574, −7.137540452115500, −6.922094295414320, −6.134216529199472, −5.683062671068904, −5.151640690824361, −4.349141838174842, −3.910992311825237, −3.420523625699933, −2.991060539688007, −2.436118641568799, −1.365420445513744, −0.6147876564320029, 0, 0.6147876564320029, 1.365420445513744, 2.436118641568799, 2.991060539688007, 3.420523625699933, 3.910992311825237, 4.349141838174842, 5.151640690824361, 5.683062671068904, 6.134216529199472, 6.922094295414320, 7.137540452115500, 7.750881554059574, 8.077281471416105, 8.668206688109040, 9.427298214500402, 9.639868206323314, 10.10364416122858, 10.74302593668604, 11.11558625590593, 11.92105066143001, 12.15570266576243, 12.37866939542061, 12.98519670233451, 13.38920658802096

Graph of the $Z$-function along the critical line