Properties

Label 2-154800-1.1-c1-0-49
Degree $2$
Conductor $154800$
Sign $-1$
Analytic cond. $1236.08$
Root an. cond. $35.1579$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·11-s − 2·13-s − 4·17-s − 2·19-s − 8·23-s − 6·29-s − 8·37-s + 2·41-s + 43-s + 8·47-s − 7·49-s + 4·53-s − 10·59-s + 10·61-s + 4·67-s + 4·71-s + 8·79-s + 8·83-s − 2·89-s + 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.80·11-s − 0.554·13-s − 0.970·17-s − 0.458·19-s − 1.66·23-s − 1.11·29-s − 1.31·37-s + 0.312·41-s + 0.152·43-s + 1.16·47-s − 49-s + 0.549·53-s − 1.30·59-s + 1.28·61-s + 0.488·67-s + 0.474·71-s + 0.900·79-s + 0.878·83-s − 0.211·89-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 154800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 154800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(154800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(1236.08\)
Root analytic conductor: \(35.1579\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 154800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
43 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54614438917720, −13.01250580238463, −12.63292063829236, −12.28575519115616, −11.53545428599116, −11.21666938274926, −10.52397680086096, −10.30820064404343, −9.876374455877090, −9.125745450882376, −8.785839984525135, −8.137364475740038, −7.624853057678322, −7.478796049609229, −6.620025508468380, −6.205935342096519, −5.545215295330749, −5.132271006350443, −4.651360051199534, −3.961206452893188, −3.486432311186937, −2.650666035885076, −2.160279036308988, −1.871317074577057, −0.5538202913269614, 0, 0.5538202913269614, 1.871317074577057, 2.160279036308988, 2.650666035885076, 3.486432311186937, 3.961206452893188, 4.651360051199534, 5.132271006350443, 5.545215295330749, 6.205935342096519, 6.620025508468380, 7.478796049609229, 7.624853057678322, 8.137364475740038, 8.785839984525135, 9.125745450882376, 9.876374455877090, 10.30820064404343, 10.52397680086096, 11.21666938274926, 11.53545428599116, 12.28575519115616, 12.63292063829236, 13.01250580238463, 13.54614438917720

Graph of the $Z$-function along the critical line