Properties

Label 2-152592-1.1-c1-0-50
Degree $2$
Conductor $152592$
Sign $-1$
Analytic cond. $1218.45$
Root an. cond. $34.9063$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s + 11-s + 4·13-s − 15-s − 4·19-s + 2·21-s + 5·23-s − 4·25-s − 27-s − 6·29-s + 5·31-s − 33-s − 2·35-s − 2·37-s − 4·39-s + 2·41-s − 10·43-s + 45-s − 47-s − 3·49-s − 6·53-s + 55-s + 4·57-s + 4·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.258·15-s − 0.917·19-s + 0.436·21-s + 1.04·23-s − 4/5·25-s − 0.192·27-s − 1.11·29-s + 0.898·31-s − 0.174·33-s − 0.338·35-s − 0.328·37-s − 0.640·39-s + 0.312·41-s − 1.52·43-s + 0.149·45-s − 0.145·47-s − 3/7·49-s − 0.824·53-s + 0.134·55-s + 0.529·57-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152592\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1218.45\)
Root analytic conductor: \(34.9063\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43064454246191, −13.09988552378040, −12.69268349649145, −12.19248116963317, −11.54154340058965, −11.20944005487299, −10.71579933011624, −10.29681463260146, −9.611561521750461, −9.422451823208980, −8.822882650503350, −8.208690928820611, −7.826536850789648, −6.918177440006810, −6.580401524734150, −6.323787233773521, −5.652706192085485, −5.291550246943550, −4.531747525700719, −4.026153574266461, −3.405965419274706, −2.971039015062239, −2.003368723673990, −1.591705304952850, −0.7744506103666518, 0, 0.7744506103666518, 1.591705304952850, 2.003368723673990, 2.971039015062239, 3.405965419274706, 4.026153574266461, 4.531747525700719, 5.291550246943550, 5.652706192085485, 6.323787233773521, 6.580401524734150, 6.918177440006810, 7.826536850789648, 8.208690928820611, 8.822882650503350, 9.422451823208980, 9.611561521750461, 10.29681463260146, 10.71579933011624, 11.20944005487299, 11.54154340058965, 12.19248116963317, 12.69268349649145, 13.09988552378040, 13.43064454246191

Graph of the $Z$-function along the critical line