Properties

Label 152592.y
Number of curves $1$
Conductor $152592$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 152592.y1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152592.y do not have complex multiplication.

Modular form 152592.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{7} + q^{9} + q^{11} + 4 q^{13} - q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 152592.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152592.y1 152592cb1 \([0, -1, 0, -725, -12711]\) \(-570425344/649539\) \(-48055493376\) \([]\) \(103680\) \(0.74396\) \(\Gamma_0(N)\)-optimal