Properties

Label 2-152421-1.1-c1-0-6
Degree $2$
Conductor $152421$
Sign $-1$
Analytic cond. $1217.08$
Root an. cond. $34.8867$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s − 4·7-s + 3·8-s + 9-s − 12-s + 4·14-s − 16-s − 6·17-s − 18-s + 4·19-s − 4·21-s − 23-s + 3·24-s − 5·25-s + 27-s + 4·28-s − 4·29-s + 4·31-s − 5·32-s + 6·34-s − 36-s + 2·37-s − 4·38-s + 12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s − 0.288·12-s + 1.06·14-s − 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.872·21-s − 0.208·23-s + 0.612·24-s − 25-s + 0.192·27-s + 0.755·28-s − 0.742·29-s + 0.718·31-s − 0.883·32-s + 1.02·34-s − 1/6·36-s + 0.328·37-s − 0.648·38-s + 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152421 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152421 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152421\)    =    \(3 \cdot 23 \cdot 47^{2}\)
Sign: $-1$
Analytic conductor: \(1217.08\)
Root analytic conductor: \(34.8867\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152421,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
23 \( 1 + T \)
47 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 12 T + p T^{2} \) 1.43.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58331539301582, −13.20256199615950, −12.76618983239928, −12.25625800966985, −11.58693324932475, −11.06859777164519, −10.50759066599796, −9.988946327842864, −9.535120792045461, −9.336945568936671, −8.965702479451028, −8.181542985288638, −7.952192116600196, −7.293234777057295, −6.829677746589899, −6.295708425915447, −5.780204738826764, −5.022480380129099, −4.455570509106062, −3.879619645753943, −3.478443544380128, −2.784592707795909, −2.197294501269120, −1.490504056220149, −0.6190401062613273, 0, 0.6190401062613273, 1.490504056220149, 2.197294501269120, 2.784592707795909, 3.478443544380128, 3.879619645753943, 4.455570509106062, 5.022480380129099, 5.780204738826764, 6.295708425915447, 6.829677746589899, 7.293234777057295, 7.952192116600196, 8.181542985288638, 8.965702479451028, 9.336945568936671, 9.535120792045461, 9.988946327842864, 10.50759066599796, 11.06859777164519, 11.58693324932475, 12.25625800966985, 12.76618983239928, 13.20256199615950, 13.58331539301582

Graph of the $Z$-function along the critical line