Properties

Label 2-151360-1.1-c1-0-54
Degree $2$
Conductor $151360$
Sign $-1$
Analytic cond. $1208.61$
Root an. cond. $34.7651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·7-s − 2·9-s + 11-s + 13-s + 15-s + 3·17-s − 7·19-s − 2·21-s − 6·23-s + 25-s − 5·27-s + 3·29-s + 4·31-s + 33-s − 2·35-s − 2·37-s + 39-s + 43-s − 2·45-s + 12·47-s − 3·49-s + 3·51-s − 12·53-s + 55-s − 7·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.755·7-s − 2/3·9-s + 0.301·11-s + 0.277·13-s + 0.258·15-s + 0.727·17-s − 1.60·19-s − 0.436·21-s − 1.25·23-s + 1/5·25-s − 0.962·27-s + 0.557·29-s + 0.718·31-s + 0.174·33-s − 0.338·35-s − 0.328·37-s + 0.160·39-s + 0.152·43-s − 0.298·45-s + 1.75·47-s − 3/7·49-s + 0.420·51-s − 1.64·53-s + 0.134·55-s − 0.927·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151360\)    =    \(2^{6} \cdot 5 \cdot 11 \cdot 43\)
Sign: $-1$
Analytic conductor: \(1208.61\)
Root analytic conductor: \(34.7651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 151360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
43 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67547690255776, −13.11942712613938, −12.67169250335006, −12.18247479102875, −11.80730009907663, −11.13458182105752, −10.51566007901166, −10.30430552426629, −9.584080258736085, −9.308512821381840, −8.760712801326042, −8.161762251330076, −8.036660541362541, −7.207654904001166, −6.542601411231071, −6.172313756545443, −5.885419321873371, −5.146518628125885, −4.476507994384466, −3.841744108421913, −3.449266175010161, −2.767172641344256, −2.291242862720563, −1.729820695270760, −0.8018537233471919, 0, 0.8018537233471919, 1.729820695270760, 2.291242862720563, 2.767172641344256, 3.449266175010161, 3.841744108421913, 4.476507994384466, 5.146518628125885, 5.885419321873371, 6.172313756545443, 6.542601411231071, 7.207654904001166, 8.036660541362541, 8.161762251330076, 8.760712801326042, 9.308512821381840, 9.584080258736085, 10.30430552426629, 10.51566007901166, 11.13458182105752, 11.80730009907663, 12.18247479102875, 12.67169250335006, 13.11942712613938, 13.67547690255776

Graph of the $Z$-function along the critical line