Properties

Label 2-14976-1.1-c1-0-25
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 13-s + 2·17-s + 6·19-s − 8·23-s − 25-s + 4·29-s − 4·31-s − 8·35-s − 6·37-s + 8·43-s + 9·49-s − 8·59-s + 10·61-s + 2·65-s + 14·67-s − 8·71-s − 2·73-s − 14·79-s − 4·83-s + 4·85-s − 8·89-s − 4·91-s + 12·95-s − 10·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 0.277·13-s + 0.485·17-s + 1.37·19-s − 1.66·23-s − 1/5·25-s + 0.742·29-s − 0.718·31-s − 1.35·35-s − 0.986·37-s + 1.21·43-s + 9/7·49-s − 1.04·59-s + 1.28·61-s + 0.248·65-s + 1.71·67-s − 0.949·71-s − 0.234·73-s − 1.57·79-s − 0.439·83-s + 0.433·85-s − 0.847·89-s − 0.419·91-s + 1.23·95-s − 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24652362379902, −15.79336557753049, −15.56373651997060, −14.37199999494938, −14.01391624352627, −13.71107361586432, −12.88706111407259, −12.59940911234460, −11.90599364179974, −11.35195139684243, −10.23775938691545, −10.17694271613083, −9.546735118898554, −9.118829217963225, −8.315693683306055, −7.545394224652614, −6.939873195857850, −6.250197975991835, −5.760145199039189, −5.344086990604997, −4.183788616310920, −3.533998865929293, −2.908094303586273, −2.101421022312421, −1.156097311396371, 0, 1.156097311396371, 2.101421022312421, 2.908094303586273, 3.533998865929293, 4.183788616310920, 5.344086990604997, 5.760145199039189, 6.250197975991835, 6.939873195857850, 7.545394224652614, 8.315693683306055, 9.118829217963225, 9.546735118898554, 10.17694271613083, 10.23775938691545, 11.35195139684243, 11.90599364179974, 12.59940911234460, 12.88706111407259, 13.71107361586432, 14.01391624352627, 14.37199999494938, 15.56373651997060, 15.79336557753049, 16.24652362379902

Graph of the $Z$-function along the critical line