Properties

Label 2-149454-1.1-c1-0-46
Degree $2$
Conductor $149454$
Sign $-1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 2·7-s − 8-s + 10-s + 11-s + 2·13-s − 2·14-s + 16-s − 4·17-s − 20-s − 22-s − 23-s − 4·25-s − 2·26-s + 2·28-s − 29-s − 32-s + 4·34-s − 2·35-s + 4·37-s + 40-s + 6·41-s + 43-s + 44-s + 46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s − 0.353·8-s + 0.316·10-s + 0.301·11-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 0.970·17-s − 0.223·20-s − 0.213·22-s − 0.208·23-s − 4/5·25-s − 0.392·26-s + 0.377·28-s − 0.185·29-s − 0.176·32-s + 0.685·34-s − 0.338·35-s + 0.657·37-s + 0.158·40-s + 0.937·41-s + 0.152·43-s + 0.150·44-s + 0.147·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52731206256542, −13.13321919581421, −12.51081460294537, −12.04718058411621, −11.44915631805418, −11.14677648491927, −10.94734848030849, −10.21146275156351, −9.607820934499410, −9.317514433153913, −8.618517587829452, −8.298319609030235, −7.840942391702501, −7.402956159069338, −6.739950727765812, −6.343107365863191, −5.734217551776914, −5.180745858209914, −4.364340585009282, −4.134597301046591, −3.419776093241612, −2.700280944422476, −2.041551426320734, −1.532385936148884, −0.7963393499710629, 0, 0.7963393499710629, 1.532385936148884, 2.041551426320734, 2.700280944422476, 3.419776093241612, 4.134597301046591, 4.364340585009282, 5.180745858209914, 5.734217551776914, 6.343107365863191, 6.739950727765812, 7.402956159069338, 7.840942391702501, 8.298319609030235, 8.618517587829452, 9.317514433153913, 9.607820934499410, 10.21146275156351, 10.94734848030849, 11.14677648491927, 11.44915631805418, 12.04718058411621, 12.51081460294537, 13.13321919581421, 13.52731206256542

Graph of the $Z$-function along the critical line