Properties

Label 2-148720-1.1-c1-0-42
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 3·7-s − 2·9-s + 11-s − 15-s − 7·17-s + 5·19-s + 3·21-s + 6·23-s + 25-s − 5·27-s + 5·29-s − 3·31-s + 33-s − 3·35-s − 3·37-s − 2·41-s − 4·43-s + 2·45-s − 2·47-s + 2·49-s − 7·51-s − 53-s − 55-s + 5·57-s − 10·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.13·7-s − 2/3·9-s + 0.301·11-s − 0.258·15-s − 1.69·17-s + 1.14·19-s + 0.654·21-s + 1.25·23-s + 1/5·25-s − 0.962·27-s + 0.928·29-s − 0.538·31-s + 0.174·33-s − 0.507·35-s − 0.493·37-s − 0.312·41-s − 0.609·43-s + 0.298·45-s − 0.291·47-s + 2/7·49-s − 0.980·51-s − 0.137·53-s − 0.134·55-s + 0.662·57-s − 1.30·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69812280053648, −13.16275449294134, −12.76541517161359, −11.88860306675704, −11.68654903391224, −11.25785665900822, −10.88406032992078, −10.33522411759370, −9.585734368257112, −9.051156040717670, −8.742660002370754, −8.353568228243437, −7.799477732261829, −7.365576187990501, −6.747119603121854, −6.370283228929568, −5.398341575137246, −5.151370075210997, −4.538639470423839, −4.077005298494757, −3.244990056531430, −2.980615591689670, −2.177085683900258, −1.653488619744549, −0.9020931252459941, 0, 0.9020931252459941, 1.653488619744549, 2.177085683900258, 2.980615591689670, 3.244990056531430, 4.077005298494757, 4.538639470423839, 5.151370075210997, 5.398341575137246, 6.370283228929568, 6.747119603121854, 7.365576187990501, 7.799477732261829, 8.353568228243437, 8.742660002370754, 9.051156040717670, 9.585734368257112, 10.33522411759370, 10.88406032992078, 11.25785665900822, 11.68654903391224, 11.88860306675704, 12.76541517161359, 13.16275449294134, 13.69812280053648

Graph of the $Z$-function along the critical line