Properties

Label 2-148720-1.1-c1-0-34
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 3·9-s − 11-s + 6·17-s − 7·19-s − 23-s + 25-s + 7·29-s − 2·35-s − 2·37-s + 8·41-s − 43-s − 3·45-s + 47-s − 3·49-s − 4·53-s − 55-s − 6·59-s + 6·61-s + 6·63-s + 16·67-s − 11·71-s − 6·73-s + 2·77-s + 10·79-s + 9·81-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 9-s − 0.301·11-s + 1.45·17-s − 1.60·19-s − 0.208·23-s + 1/5·25-s + 1.29·29-s − 0.338·35-s − 0.328·37-s + 1.24·41-s − 0.152·43-s − 0.447·45-s + 0.145·47-s − 3/7·49-s − 0.549·53-s − 0.134·55-s − 0.781·59-s + 0.768·61-s + 0.755·63-s + 1.95·67-s − 1.30·71-s − 0.702·73-s + 0.227·77-s + 1.12·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65087962559966, −13.00775074668080, −12.64844755325368, −12.26001668165221, −11.77949602532025, −11.09920884467876, −10.66604710063624, −10.27694615499083, −9.692805958224846, −9.395086323960436, −8.659948301828146, −8.316973774627080, −7.885909495233276, −7.190634862154385, −6.534335475350587, −6.191616218348796, −5.774162398984497, −5.195895232121086, −4.653985425996162, −3.905513730246945, −3.371987535193725, −2.735766896270863, −2.427248067725601, −1.560251584948996, −0.7454479033361730, 0, 0.7454479033361730, 1.560251584948996, 2.427248067725601, 2.735766896270863, 3.371987535193725, 3.905513730246945, 4.653985425996162, 5.195895232121086, 5.774162398984497, 6.191616218348796, 6.534335475350587, 7.190634862154385, 7.885909495233276, 8.316973774627080, 8.659948301828146, 9.395086323960436, 9.692805958224846, 10.27694615499083, 10.66604710063624, 11.09920884467876, 11.77949602532025, 12.26001668165221, 12.64844755325368, 13.00775074668080, 13.65087962559966

Graph of the $Z$-function along the critical line