Properties

Label 2-146832-1.1-c1-0-14
Degree $2$
Conductor $146832$
Sign $1$
Analytic cond. $1172.45$
Root an. cond. $34.2411$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 7-s + 9-s + 4·11-s − 2·13-s − 2·15-s + 2·17-s − 19-s − 21-s + 23-s − 25-s + 27-s + 2·29-s + 4·33-s + 2·35-s + 2·37-s − 2·39-s − 6·41-s − 4·43-s − 2·45-s + 49-s + 2·51-s + 6·53-s − 8·55-s − 57-s + 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.516·15-s + 0.485·17-s − 0.229·19-s − 0.218·21-s + 0.208·23-s − 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.696·33-s + 0.338·35-s + 0.328·37-s − 0.320·39-s − 0.937·41-s − 0.609·43-s − 0.298·45-s + 1/7·49-s + 0.280·51-s + 0.824·53-s − 1.07·55-s − 0.132·57-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 146832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 146832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(146832\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 19 \cdot 23\)
Sign: $1$
Analytic conductor: \(1172.45\)
Root analytic conductor: \(34.2411\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 146832,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.550647622\)
\(L(\frac12)\) \(\approx\) \(2.550647622\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39493603437202, −12.84236584018482, −12.34033618300365, −11.96631275735288, −11.54758921493566, −11.13481576686157, −10.22703759803884, −10.10911113620046, −9.421795948242498, −8.992262703069276, −8.556605470144066, −7.953173449766788, −7.591071014488141, −7.051011470192710, −6.472672119616973, −6.206476418811412, −5.147276282329147, −4.903378412411059, −4.034752028651426, −3.695068283589649, −3.375473708729500, −2.515107296352807, −2.002330013990620, −1.129827381300056, −0.5015141517197985, 0.5015141517197985, 1.129827381300056, 2.002330013990620, 2.515107296352807, 3.375473708729500, 3.695068283589649, 4.034752028651426, 4.903378412411059, 5.147276282329147, 6.206476418811412, 6.472672119616973, 7.051011470192710, 7.591071014488141, 7.953173449766788, 8.556605470144066, 8.992262703069276, 9.421795948242498, 10.10911113620046, 10.22703759803884, 11.13481576686157, 11.54758921493566, 11.96631275735288, 12.34033618300365, 12.84236584018482, 13.39493603437202

Graph of the $Z$-function along the critical line