Properties

Label 2-145600-1.1-c1-0-52
Degree $2$
Conductor $145600$
Sign $1$
Analytic cond. $1162.62$
Root an. cond. $34.0972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 7-s + 9-s + 4·11-s + 13-s − 2·19-s − 2·21-s + 2·23-s + 4·27-s + 2·29-s − 8·33-s + 2·37-s − 2·39-s + 4·43-s + 49-s + 4·53-s + 4·57-s − 6·59-s − 6·61-s + 63-s − 4·67-s − 4·69-s + 6·71-s + 14·73-s + 4·77-s + 8·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.277·13-s − 0.458·19-s − 0.436·21-s + 0.417·23-s + 0.769·27-s + 0.371·29-s − 1.39·33-s + 0.328·37-s − 0.320·39-s + 0.609·43-s + 1/7·49-s + 0.549·53-s + 0.529·57-s − 0.781·59-s − 0.768·61-s + 0.125·63-s − 0.488·67-s − 0.481·69-s + 0.712·71-s + 1.63·73-s + 0.455·77-s + 0.900·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 145600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(145600\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(1162.62\)
Root analytic conductor: \(34.0972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 145600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.045305266\)
\(L(\frac12)\) \(\approx\) \(2.045305266\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32974134969706, −12.72261948819446, −12.22151913626641, −12.01122893059461, −11.32625620404725, −11.16543126118582, −10.60188591051923, −10.21520656432154, −9.461839429505823, −9.034813563082897, −8.642357669990535, −7.936556918648524, −7.487123960021888, −6.711707633311942, −6.443200880577397, −6.037475734099282, −5.417013319154256, −4.882559213881308, −4.444503714019263, −3.837847615067045, −3.255926397974691, −2.435896073449769, −1.742772180702764, −1.015345914370140, −0.5534799627508702, 0.5534799627508702, 1.015345914370140, 1.742772180702764, 2.435896073449769, 3.255926397974691, 3.837847615067045, 4.444503714019263, 4.882559213881308, 5.417013319154256, 6.037475734099282, 6.443200880577397, 6.711707633311942, 7.487123960021888, 7.936556918648524, 8.642357669990535, 9.034813563082897, 9.461839429505823, 10.21520656432154, 10.60188591051923, 11.16543126118582, 11.32625620404725, 12.01122893059461, 12.22151913626641, 12.72261948819446, 13.32974134969706

Graph of the $Z$-function along the critical line