Properties

Label 2-145200-1.1-c1-0-171
Degree $2$
Conductor $145200$
Sign $-1$
Analytic cond. $1159.42$
Root an. cond. $34.0503$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 2·13-s − 3·17-s + 3·19-s − 21-s − 23-s − 27-s + 6·29-s − 2·31-s − 3·37-s − 2·39-s + 3·41-s − 12·43-s + 47-s − 6·49-s + 3·51-s − 6·53-s − 3·57-s + 3·59-s − 10·61-s + 63-s + 6·67-s + 69-s + 7·71-s + 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.727·17-s + 0.688·19-s − 0.218·21-s − 0.208·23-s − 0.192·27-s + 1.11·29-s − 0.359·31-s − 0.493·37-s − 0.320·39-s + 0.468·41-s − 1.82·43-s + 0.145·47-s − 6/7·49-s + 0.420·51-s − 0.824·53-s − 0.397·57-s + 0.390·59-s − 1.28·61-s + 0.125·63-s + 0.733·67-s + 0.120·69-s + 0.830·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 145200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(145200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1159.42\)
Root analytic conductor: \(34.0503\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 145200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69289759239830, −13.10132395025154, −12.59830095697163, −12.16754203110284, −11.64000743250911, −11.12255758938180, −11.00893324642983, −10.16145000516577, −9.964727339018827, −9.254884123719161, −8.784966226824437, −8.187479839912809, −7.880974952748138, −7.108753273712830, −6.688139327300349, −6.270081850022344, −5.637238724223137, −5.122164430252840, −4.651573516919488, −4.149416576005989, −3.401192173447753, −2.957057864821220, −2.026384622843565, −1.552318765232857, −0.8232933185094097, 0, 0.8232933185094097, 1.552318765232857, 2.026384622843565, 2.957057864821220, 3.401192173447753, 4.149416576005989, 4.651573516919488, 5.122164430252840, 5.637238724223137, 6.270081850022344, 6.688139327300349, 7.108753273712830, 7.880974952748138, 8.187479839912809, 8.784966226824437, 9.254884123719161, 9.964727339018827, 10.16145000516577, 11.00893324642983, 11.12255758938180, 11.64000743250911, 12.16754203110284, 12.59830095697163, 13.10132395025154, 13.69289759239830

Graph of the $Z$-function along the critical line