Properties

Label 2-144150-1.1-c1-0-44
Degree $2$
Conductor $144150$
Sign $1$
Analytic cond. $1151.04$
Root an. cond. $33.9270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s + 9-s − 12-s + 4·13-s − 2·14-s + 16-s + 6·17-s − 18-s − 2·21-s + 24-s − 4·26-s − 27-s + 2·28-s − 8·29-s − 32-s − 6·34-s + 36-s + 4·37-s − 4·39-s + 10·41-s + 2·42-s + 8·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 0.534·14-s + 1/4·16-s + 1.45·17-s − 0.235·18-s − 0.436·21-s + 0.204·24-s − 0.784·26-s − 0.192·27-s + 0.377·28-s − 1.48·29-s − 0.176·32-s − 1.02·34-s + 1/6·36-s + 0.657·37-s − 0.640·39-s + 1.56·41-s + 0.308·42-s + 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144150\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(1151.04\)
Root analytic conductor: \(33.9270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 144150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008513367\)
\(L(\frac12)\) \(\approx\) \(2.008513367\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
31 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11910469986257, −12.84635418024250, −12.45241194311949, −11.63077572580372, −11.42015771714091, −11.02065934465222, −10.63741346539867, −9.939229966097099, −9.602570990026634, −9.082138680949599, −8.455405207303205, −8.001071952020820, −7.595462924110245, −7.154942361853709, −6.453149888847732, −5.847664453421243, −5.610444121636270, −5.051676923732665, −4.130470763069572, −3.891727909906307, −3.073167357044026, −2.394476959141629, −1.594836458090972, −1.167412696747786, −0.5543942938138153, 0.5543942938138153, 1.167412696747786, 1.594836458090972, 2.394476959141629, 3.073167357044026, 3.891727909906307, 4.130470763069572, 5.051676923732665, 5.610444121636270, 5.847664453421243, 6.453149888847732, 7.154942361853709, 7.595462924110245, 8.001071952020820, 8.455405207303205, 9.082138680949599, 9.602570990026634, 9.939229966097099, 10.63741346539867, 11.02065934465222, 11.42015771714091, 11.63077572580372, 12.45241194311949, 12.84635418024250, 13.11910469986257

Graph of the $Z$-function along the critical line