Properties

Label 2-120e2-1.1-c1-0-105
Degree $2$
Conductor $14400$
Sign $-1$
Analytic cond. $114.984$
Root an. cond. $10.7230$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 2·11-s − 6·13-s − 2·17-s + 4·23-s − 8·31-s − 2·37-s − 2·41-s + 4·43-s + 8·47-s − 3·49-s + 6·53-s + 10·59-s − 2·61-s + 8·67-s − 12·71-s − 4·73-s + 4·77-s − 4·83-s + 10·89-s − 12·91-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.603·11-s − 1.66·13-s − 0.485·17-s + 0.834·23-s − 1.43·31-s − 0.328·37-s − 0.312·41-s + 0.609·43-s + 1.16·47-s − 3/7·49-s + 0.824·53-s + 1.30·59-s − 0.256·61-s + 0.977·67-s − 1.42·71-s − 0.468·73-s + 0.455·77-s − 0.439·83-s + 1.05·89-s − 1.25·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(114.984\)
Root analytic conductor: \(10.7230\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.43991477160014, −15.86869673127612, −14.97308658029380, −14.79429693834879, −14.35426596759064, −13.62677543993374, −13.01645150911515, −12.35079518511054, −11.95214411822746, −11.27927074791834, −10.81637053847256, −10.11273870237079, −9.465733616383356, −8.941735381642752, −8.381370730060747, −7.429663162539531, −7.248355247160462, −6.512708308604890, −5.518835883608753, −5.114489591072073, −4.392730218924860, −3.761023968233590, −2.717216422884158, −2.107613467000151, −1.206742240870161, 0, 1.206742240870161, 2.107613467000151, 2.717216422884158, 3.761023968233590, 4.392730218924860, 5.114489591072073, 5.518835883608753, 6.512708308604890, 7.248355247160462, 7.429663162539531, 8.381370730060747, 8.941735381642752, 9.465733616383356, 10.11273870237079, 10.81637053847256, 11.27927074791834, 11.95214411822746, 12.35079518511054, 13.01645150911515, 13.62677543993374, 14.35426596759064, 14.79429693834879, 14.97308658029380, 15.86869673127612, 16.43991477160014

Graph of the $Z$-function along the critical line