Properties

Label 2-14196-1.1-c1-0-4
Degree $2$
Conductor $14196$
Sign $1$
Analytic cond. $113.355$
Root an. cond. $10.6468$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 4·11-s − 6·17-s + 8·19-s − 21-s + 4·23-s − 5·25-s + 27-s + 2·29-s − 4·33-s − 8·37-s − 8·43-s + 4·47-s + 49-s − 6·51-s − 10·53-s + 8·57-s + 4·59-s + 6·61-s − 63-s + 8·67-s + 4·69-s − 4·71-s + 4·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.20·11-s − 1.45·17-s + 1.83·19-s − 0.218·21-s + 0.834·23-s − 25-s + 0.192·27-s + 0.371·29-s − 0.696·33-s − 1.31·37-s − 1.21·43-s + 0.583·47-s + 1/7·49-s − 0.840·51-s − 1.37·53-s + 1.05·57-s + 0.520·59-s + 0.768·61-s − 0.125·63-s + 0.977·67-s + 0.481·69-s − 0.474·71-s + 0.468·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14196\)    =    \(2^{2} \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(113.355\)
Root analytic conductor: \(10.6468\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14196,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.917002049\)
\(L(\frac12)\) \(\approx\) \(1.917002049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92595174876078, −15.59600136883362, −15.23748037845246, −14.36148615528719, −13.80212629889515, −13.28252465115729, −13.08670728455094, −12.15467508518399, −11.70213797823368, −10.88299941486669, −10.47544656429726, −9.643463203217358, −9.378655343407923, −8.563941319871449, −8.046155678154763, −7.379901782848071, −6.869792961015851, −6.144870613466606, −5.105980847418114, −4.985342984699040, −3.802273092230758, −3.248001046509259, −2.532382120215165, −1.806791305034471, −0.5716684349568890, 0.5716684349568890, 1.806791305034471, 2.532382120215165, 3.248001046509259, 3.802273092230758, 4.985342984699040, 5.105980847418114, 6.144870613466606, 6.869792961015851, 7.379901782848071, 8.046155678154763, 8.563941319871449, 9.378655343407923, 9.643463203217358, 10.47544656429726, 10.88299941486669, 11.70213797823368, 12.15467508518399, 13.08670728455094, 13.28252465115729, 13.80212629889515, 14.36148615528719, 15.23748037845246, 15.59600136883362, 15.92595174876078

Graph of the $Z$-function along the critical line