Properties

Label 2-141610-1.1-c1-0-49
Degree $2$
Conductor $141610$
Sign $-1$
Analytic cond. $1130.76$
Root an. cond. $33.6267$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s − 2·9-s + 10-s + 3·11-s − 12-s + 5·13-s + 15-s + 16-s + 2·18-s + 2·19-s − 20-s − 3·22-s + 24-s + 25-s − 5·26-s + 5·27-s − 6·29-s − 30-s + 4·31-s − 32-s − 3·33-s − 2·36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.316·10-s + 0.904·11-s − 0.288·12-s + 1.38·13-s + 0.258·15-s + 1/4·16-s + 0.471·18-s + 0.458·19-s − 0.223·20-s − 0.639·22-s + 0.204·24-s + 1/5·25-s − 0.980·26-s + 0.962·27-s − 1.11·29-s − 0.182·30-s + 0.718·31-s − 0.176·32-s − 0.522·33-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141610\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1130.76\)
Root analytic conductor: \(33.6267\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59328856751813, −13.15648509543352, −12.51187469079731, −11.96027576819737, −11.60789188704165, −11.21846324381520, −10.96455108982131, −10.29021260940970, −9.809482269658397, −9.183447030214558, −8.714669437760914, −8.483799298467268, −7.786799066432873, −7.349923591012305, −6.651538256848932, −6.291247686434194, −5.843230531059215, −5.301189006813960, −4.613023844647634, −3.835775320496621, −3.550971683387179, −2.828249369108764, −2.097620545873325, −1.229863280959843, −0.8660233642647116, 0, 0.8660233642647116, 1.229863280959843, 2.097620545873325, 2.828249369108764, 3.550971683387179, 3.835775320496621, 4.613023844647634, 5.301189006813960, 5.843230531059215, 6.291247686434194, 6.651538256848932, 7.349923591012305, 7.786799066432873, 8.483799298467268, 8.714669437760914, 9.183447030214558, 9.809482269658397, 10.29021260940970, 10.96455108982131, 11.21846324381520, 11.60789188704165, 11.96027576819737, 12.51187469079731, 13.15648509543352, 13.59328856751813

Graph of the $Z$-function along the critical line