Properties

Label 2-141570-1.1-c1-0-57
Degree $2$
Conductor $141570$
Sign $-1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 3·7-s − 8-s − 10-s − 13-s + 3·14-s + 16-s − 8·17-s + 5·19-s + 20-s + 2·23-s + 25-s + 26-s − 3·28-s − 4·29-s + 5·31-s − 32-s + 8·34-s − 3·35-s − 5·38-s − 40-s + 2·41-s − 9·43-s − 2·46-s − 47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.13·7-s − 0.353·8-s − 0.316·10-s − 0.277·13-s + 0.801·14-s + 1/4·16-s − 1.94·17-s + 1.14·19-s + 0.223·20-s + 0.417·23-s + 1/5·25-s + 0.196·26-s − 0.566·28-s − 0.742·29-s + 0.898·31-s − 0.176·32-s + 1.37·34-s − 0.507·35-s − 0.811·38-s − 0.158·40-s + 0.312·41-s − 1.37·43-s − 0.294·46-s − 0.145·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.60315329549273, −13.14329785592298, −12.74483949769499, −12.20390325844477, −11.56497266178470, −11.24223348212748, −10.68719735047746, −10.12514329000370, −9.729717884734315, −9.325516280048471, −8.919157997365633, −8.480909721158268, −7.651678254727105, −7.351318109560396, −6.662312400192533, −6.336146571637845, −5.997743646756939, −5.052405873581251, −4.766213642704336, −3.928345828190383, −3.136418422034419, −2.934975134138598, −2.099527126484657, −1.612818514944601, −0.6644985801051989, 0, 0.6644985801051989, 1.612818514944601, 2.099527126484657, 2.934975134138598, 3.136418422034419, 3.928345828190383, 4.766213642704336, 5.052405873581251, 5.997743646756939, 6.336146571637845, 6.662312400192533, 7.351318109560396, 7.651678254727105, 8.480909721158268, 8.919157997365633, 9.325516280048471, 9.729717884734315, 10.12514329000370, 10.68719735047746, 11.24223348212748, 11.56497266178470, 12.20390325844477, 12.74483949769499, 13.14329785592298, 13.60315329549273

Graph of the $Z$-function along the critical line