L(s) = 1 | − 2-s + 3-s − 4-s + 2·5-s − 6-s + 3·8-s + 9-s − 2·10-s + 4·11-s − 12-s − 2·13-s + 2·15-s − 16-s + 2·17-s − 18-s − 2·20-s − 4·22-s + 3·24-s − 25-s + 2·26-s + 27-s − 6·29-s − 2·30-s − 4·31-s − 5·32-s + 4·33-s − 2·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.894·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.632·10-s + 1.20·11-s − 0.288·12-s − 0.554·13-s + 0.516·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.447·20-s − 0.852·22-s + 0.612·24-s − 1/5·25-s + 0.392·26-s + 0.192·27-s − 1.11·29-s − 0.365·30-s − 0.718·31-s − 0.883·32-s + 0.696·33-s − 0.342·34-s + ⋯ |
Λ(s)=(=(141s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(141s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9624779691 |
L(21) |
≈ |
0.9624779691 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 3 | 1−T | |
| 47 | 1+T | |
good | 2 | 1+T+pT2 | 1.2.b |
| 5 | 1−2T+pT2 | 1.5.ac |
| 7 | 1+pT2 | 1.7.a |
| 11 | 1−4T+pT2 | 1.11.ae |
| 13 | 1+2T+pT2 | 1.13.c |
| 17 | 1−2T+pT2 | 1.17.ac |
| 19 | 1+pT2 | 1.19.a |
| 23 | 1+pT2 | 1.23.a |
| 29 | 1+6T+pT2 | 1.29.g |
| 31 | 1+4T+pT2 | 1.31.e |
| 37 | 1+10T+pT2 | 1.37.k |
| 41 | 1+2T+pT2 | 1.41.c |
| 43 | 1−8T+pT2 | 1.43.ai |
| 53 | 1+2T+pT2 | 1.53.c |
| 59 | 1+4T+pT2 | 1.59.e |
| 61 | 1−14T+pT2 | 1.61.ao |
| 67 | 1+8T+pT2 | 1.67.i |
| 71 | 1−16T+pT2 | 1.71.aq |
| 73 | 1−2T+pT2 | 1.73.ac |
| 79 | 1−8T+pT2 | 1.79.ai |
| 83 | 1+4T+pT2 | 1.83.e |
| 89 | 1−18T+pT2 | 1.89.as |
| 97 | 1+14T+pT2 | 1.97.o |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.33645536469427920089901573537, −12.25269126968811006373592111535, −10.75662405333874085581848740520, −9.575443434008070535852551553455, −9.310688144069273468867229042449, −8.104359289936234206684837124367, −6.91995908324451733419004550129, −5.36270443497112201719182264503, −3.82986653803997716904500612796, −1.74630150225815909613391524573,
1.74630150225815909613391524573, 3.82986653803997716904500612796, 5.36270443497112201719182264503, 6.91995908324451733419004550129, 8.104359289936234206684837124367, 9.310688144069273468867229042449, 9.575443434008070535852551553455, 10.75662405333874085581848740520, 12.25269126968811006373592111535, 13.33645536469427920089901573537