Properties

Label 2-139650-1.1-c1-0-181
Degree $2$
Conductor $139650$
Sign $-1$
Analytic cond. $1115.11$
Root an. cond. $33.3932$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s − 6·11-s + 12-s + 13-s + 16-s + 2·17-s + 18-s + 19-s − 6·22-s + 23-s + 24-s + 26-s + 27-s − 9·29-s + 2·31-s + 32-s − 6·33-s + 2·34-s + 36-s − 10·37-s + 38-s + 39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 0.277·13-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.229·19-s − 1.27·22-s + 0.208·23-s + 0.204·24-s + 0.196·26-s + 0.192·27-s − 1.67·29-s + 0.359·31-s + 0.176·32-s − 1.04·33-s + 0.342·34-s + 1/6·36-s − 1.64·37-s + 0.162·38-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(139650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1115.11\)
Root analytic conductor: \(33.3932\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 139650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58024389506217, −13.21792107557376, −12.84991161641079, −12.33658766421013, −11.91848982241957, −11.16311115227145, −10.84219669939760, −10.26473321199860, −10.01445063258889, −9.224627547681698, −8.774454754656066, −8.219636394627857, −7.594721914659629, −7.430619151970423, −6.860814128704009, −6.029831601149519, −5.572001422146605, −5.197297363647609, −4.653777405357206, −3.883677251197299, −3.486092393698787, −2.895747747023268, −2.344125497474385, −1.851535319075759, −0.9570576089161345, 0, 0.9570576089161345, 1.851535319075759, 2.344125497474385, 2.895747747023268, 3.486092393698787, 3.883677251197299, 4.653777405357206, 5.197297363647609, 5.572001422146605, 6.029831601149519, 6.860814128704009, 7.430619151970423, 7.594721914659629, 8.219636394627857, 8.774454754656066, 9.224627547681698, 10.01445063258889, 10.26473321199860, 10.84219669939760, 11.16311115227145, 11.91848982241957, 12.33658766421013, 12.84991161641079, 13.21792107557376, 13.58024389506217

Graph of the $Z$-function along the critical line