Properties

Label 2-13650-1.1-c1-0-4
Degree $2$
Conductor $13650$
Sign $1$
Analytic cond. $108.995$
Root an. cond. $10.4401$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s + 6·11-s − 12-s − 13-s + 14-s + 16-s − 2·17-s − 18-s − 4·19-s + 21-s − 6·22-s − 6·23-s + 24-s + 26-s − 27-s − 28-s + 2·29-s + 4·31-s − 32-s − 6·33-s + 2·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.917·19-s + 0.218·21-s − 1.27·22-s − 1.25·23-s + 0.204·24-s + 0.196·26-s − 0.192·27-s − 0.188·28-s + 0.371·29-s + 0.718·31-s − 0.176·32-s − 1.04·33-s + 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(108.995\)
Root analytic conductor: \(10.4401\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9034151112\)
\(L(\frac12)\) \(\approx\) \(0.9034151112\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40683168580879, −15.63681004890194, −15.31213864671528, −14.57539955983377, −13.94536090211081, −13.46389722930170, −12.42812459014998, −12.12284319270819, −11.77410915740855, −10.90751232873290, −10.54117899931850, −9.766141309854813, −9.384195048249520, −8.682570554185729, −8.189616908864090, −7.268606170578295, −6.632868638344075, −6.367827382192306, −5.688115315588352, −4.628112020422357, −4.073730634580445, −3.319124575852807, −2.194141759666467, −1.526446893021416, −0.4976834297724166, 0.4976834297724166, 1.526446893021416, 2.194141759666467, 3.319124575852807, 4.073730634580445, 4.628112020422357, 5.688115315588352, 6.367827382192306, 6.632868638344075, 7.268606170578295, 8.189616908864090, 8.682570554185729, 9.384195048249520, 9.766141309854813, 10.54117899931850, 10.90751232873290, 11.77410915740855, 12.12284319270819, 12.42812459014998, 13.46389722930170, 13.94536090211081, 14.57539955983377, 15.31213864671528, 15.63681004890194, 16.40683168580879

Graph of the $Z$-function along the critical line