Properties

Label 2-364e2-1.1-c1-0-79
Degree $2$
Conductor $132496$
Sign $-1$
Analytic cond. $1057.98$
Root an. cond. $32.5266$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·5-s + 6·9-s − 3·11-s − 9·15-s + 2·17-s + 19-s + 4·25-s − 9·27-s + 7·29-s − 3·31-s + 9·33-s − 2·37-s + 3·41-s + 7·43-s + 18·45-s − 47-s − 6·51-s + 3·53-s − 9·55-s − 3·57-s + 4·59-s + 13·61-s − 3·67-s + 13·71-s − 13·73-s − 12·75-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.34·5-s + 2·9-s − 0.904·11-s − 2.32·15-s + 0.485·17-s + 0.229·19-s + 4/5·25-s − 1.73·27-s + 1.29·29-s − 0.538·31-s + 1.56·33-s − 0.328·37-s + 0.468·41-s + 1.06·43-s + 2.68·45-s − 0.145·47-s − 0.840·51-s + 0.412·53-s − 1.21·55-s − 0.397·57-s + 0.520·59-s + 1.66·61-s − 0.366·67-s + 1.54·71-s − 1.52·73-s − 1.38·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1057.98\)
Root analytic conductor: \(32.5266\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67415329506675, −13.01836013682933, −12.72762959861257, −12.34576546313944, −11.69947823300260, −11.33267635704611, −10.72202418545057, −10.32868191513883, −10.07362633485926, −9.594420482263213, −8.977017541443931, −8.340261428891217, −7.605751959504631, −7.181179172621935, −6.537289327565536, −6.164383016463157, −5.693151369596494, −5.213235084986477, −5.025879399243432, −4.266593061450212, −3.570521155998441, −2.611688147771975, −2.225970051208314, −1.307462749408461, −0.8927924909422719, 0, 0.8927924909422719, 1.307462749408461, 2.225970051208314, 2.611688147771975, 3.570521155998441, 4.266593061450212, 5.025879399243432, 5.213235084986477, 5.693151369596494, 6.164383016463157, 6.537289327565536, 7.181179172621935, 7.605751959504631, 8.340261428891217, 8.977017541443931, 9.594420482263213, 10.07362633485926, 10.32868191513883, 10.72202418545057, 11.33267635704611, 11.69947823300260, 12.34576546313944, 12.72762959861257, 13.01836013682933, 13.67415329506675

Graph of the $Z$-function along the critical line